Properties

Label 1296.2922.6.k1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{9}, d^{2}, d^{3}, a^{2}b^{14}, b^{6}, cd^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_6^2:C_6$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_6^2:C_6$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$S_3\times C_3^2.A_4$
Normal closure:$S_3\times C_3^2.A_4$
Core:$C_6\times D_6$
Minimal over-subgroups:$S_3\times C_3^2.A_4$
Maximal under-subgroups:$C_3^2.A_4$$C_6\times D_6$$C_2^2:C_{18}$$S_3\times C_9$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_6^2.S_3^2$