-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '1088.296', 'ambient_counter': 296, 'ambient_order': 1088, 'ambient_tex': 'C_{68}.D_8', 'central': False, 'central_factor': False, 'centralizer_order': 272, 'characteristic': True, 'core_order': 16, 'counter': 37, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '1088.296.68.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '68.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '68.4', 'quotient_Agroup': True, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 4, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 68, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'D_{34}', 'simple': False, 'solvable': True, 'special_labels': ['Phi', 'U1'], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '16.2', 'subgroup_hash': 2, 'subgroup_order': 16, 'subgroup_tex': 'C_4^2', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1088.296', 'aut_centralizer_order': 17408, 'aut_label': '68.a1', 'aut_quo_index': 2, 'aut_stab_index': 1, 'aut_weyl_group': '4.2', 'aut_weyl_index': 17408, 'centralizer': '4.a1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['4.a1.a1', '34.a1.a1', '34.b1.a1', '34.c1.a1'], 'contains': ['136.a1.a1', '136.b1.a1', '136.c1.a1'], 'core': '68.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [5850, 7265, 6510, 5819, 6977, 5905, 7834, 4073], 'generators': [828, 816], 'label': '1088.296.68.a1.a1', 'mobius_quo': 0, 'mobius_sub': -34, 'normal_closure': '68.a1.a1', 'normal_contained_in': ['4.a1.a1', '34.a1.a1'], 'normal_contains': ['136.a1.a1', '136.b1.a1', '136.c1.a1'], 'normalizer': '1.a1.a1', 'old_label': '68.a1.a1', 'projective_image': '272.14', 'quotient_action_image': '4.2', 'quotient_action_kernel': '17.1', 'quotient_action_kernel_order': 17, 'quotient_fusion': None, 'short_label': '68.a1.a1', 'subgroup_fusion': None, 'weyl_group': '4.2'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '16.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 6, 2, 2], 'aut_gens': [[1, 4], [3, 5], [3, 12], [14, 13], [9, 6], [3, 14]], 'aut_group': '96.195', 'aut_hash': 195, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 96, 'aut_permdeg': 8, 'aut_perms': [134, 16, 1447, 11520, 5160], 'aut_phi_ratio': 12.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1], [4, 1, 12, 1]], 'aut_supersolvable': False, 'aut_tex': '\\GL(2,\\mathbb{Z}/4)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': '96.195', 'autcent_hash': 195, 'autcent_nilpotent': False, 'autcent_order': 96, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': '\\GL(2,\\mathbb{Z}/4)', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 1, 12]], 'center_label': '16.2', 'center_order': 16, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['4.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 1, 2, 6]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 4, 'exponents_of_order': [4], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 4], [1, 4]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16]], 'label': '16.2', 'linC_count': 48, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 12, 'linQ_dim': 4, 'linQ_dim_count': 12, 'linR_count': 12, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C4^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 3, 'number_characteristic_subgroups': 3, 'number_conjugacy_classes': 16, 'number_divisions': 10, 'number_normal_subgroups': 15, 'number_subgroup_autclasses': 6, 'number_subgroup_classes': 15, 'number_subgroups': 15, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 3], [4, 12]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 6, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[3, 5], [3, 12], [14, 13], [9, 6], [3, 14]], 'outer_group': '96.195', 'outer_hash': 195, 'outer_nilpotent': False, 'outer_order': 96, 'outer_permdeg': 8, 'outer_perms': [134, 16, 1447, 11520, 5160], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': '\\GL(2,\\mathbb{Z}/4)', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 8, 'pgroup': 2, 'primary_abelian_invariants': [4, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6]], 'representations': {'PC': {'code': 10245, 'gens': [1, 3], 'pres': [4, 2, 2, 2, 2, 8, 34]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16917782, 35931238]}, 'GLFp': {'d': 2, 'p': 5, 'gens': [251, 377]}, 'Perm': {'d': 8, 'gens': [16560, 22, 5160, 7]}}, 'schur_multiplier': [4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4, 4], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4^2', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 272, 'aut_gen_orders': [16, 68, 8, 16, 16, 8, 16, 8], 'aut_gens': [[1, 2, 16], [713, 982, 112], [157, 694, 16], [1009, 746, 240], [721, 722, 656], [249, 526, 1008], [565, 834, 944], [1021, 738, 112], [93, 898, 240]], 'aut_group': None, 'aut_hash': 5835236701334903880, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 69632, 'aut_permdeg': 288, 'aut_perms': [316783615872532012265909857189398101682635648660053088636502211345023955516433799562802126067074436203084500028883700346846000247973109869159928356509605075903674449378350805665235620617140037131182188758358574403169477728051483136869156973611695721263230966949793142941480473191978131278519613521203017463748618981547906713500272947688312536584579661263332735584472191998778332252431110563426139622427951736667017792279900838926606058963860416799982827282435739464596882037724388520598976438680510768763663549021048951743832213868303402694441083284455339572079703868852205315901834749, 473843649840080782036618884700984097891553500883024076226329843590113876268062856843106114117647234447492464086973296672221099550480402414742434908023511465060621205996053318606391735480292759248798511137437138324950072708229041199146318618393834996644263579598893863638571291024009305488149913108072905360984715247066226414874552136241336318848333481328725474687042726477378162363951595904832773237946730195711331618299827853624540254737248368083484930700112731996499147529511773420377173122135702050975286360442172049843916220890192647446929706393570547400807095692030141606781042965, 582880344403433521722828331661717513806318573902430458058134581910914880715674086101152883330246490129331044660415975991103140508545893239635737399058999272033461263829684112092155751198671978910015936886229255677873324250321172509174048594343494746847973167112798644884166332525982357361926687893868373842160844949914838903434435234622900399185196472780774186373891222768956967704431588159755451358134660455920070664218782001664155763837805911144381701961538641004513706983820682864600650777189583602454262345065600091877438119171464598667817831507322904637099913671570650307642874042, 422729112446688544700334590428391203703507701808777952500949778903299939063518451312360244751625758667357626785022890887788584418438756998322001091221296781219437735950467463775883658892949184477675776237777268648610650862239955001960825633227969019703016948529453044592535894030826969234393754433062953747296449343243561209142598490874788070981284047118976463939772969450993020569060110856635979117977169025504789903415125837021636600116609162537160145103789050782186963224423169490130788840284009978725930441792401966187796689162765483218810417489940954617398763783858406040720351057, 19163460560614806161887593084675383364470800339033928970433798441339361732861511255660269049602660644197148265532979076675501248762444717718807689452786471435582773570379935639686087132915773618482319010811432586901711853967426777933880023190130446192594190020015144047078878269690734398218323983126048395424323492114574367323057292027139641517516240487814725962283518326108164760409017996306080789447228321144516042130651888675229396158810222044976225110735199063320334733386504060502099626903455933201154593375904103397172664208823889318210030118067999757330610357165564509745692993, 148631293647322073224297477243320793631819303133199178861716000531870975752930742034089327098044608785431236769232769259533391087619725968013550042618939534875924143864436267138229876276804702013150885631541465868906318705037458012123335025013580791916649199123800417452915965374137756606620760733711063889096769325481767975328948795414116717288054869055136953526497286553259932522090636119420855798026048517444176130309453888172228918138724173684613111340946072148074108472500451749859812851306565252272134022519497867503668055126504274713862678737194786292893514892430009691298515909, 49431643199368109001636023987813123068176495291460421933739304625824425128169069748590063211284413587488893482775022054047742345948760485159149988504208235608533661009866169288475513389143507659484150329683589243905148152639734307615725367522260186063458384035470066098221199327507643712668856471839403439687089938851040266411077693743610224367404738274582762635264235193766061173797845563361120925353567503572793970459494433276053587637117700611415079940719839000922315578253511120639512741285802873439200352509240892744338408079632435854391903397921301669470764092569627947004477019, 710766314955499998792515590413084294960058695898807252400744403462940959900330777255274789904871401821939230047897409639060025556115434920689401050007585752861783856113341223683262083466654583328582411206434025643488110832171697197919613557194911988068458815709346806512802470135910809630068664746868246978120350097217732546735806347958797291423771495740909259623400028575325568596120785759458324492266536340782294607557351125005865651870147200829562131152380256731940483358238352642715120394017637492238460103703765674957359859633494280959031166911036186863551750138303013184986996346], 'aut_phi_ratio': 136.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 2, 1, 4], [4, 4, 1, 1], [4, 136, 2, 1], [8, 4, 4, 1], [8, 68, 4, 1], [17, 2, 8, 1], [34, 2, 8, 3], [68, 2, 16, 2], [68, 4, 8, 2], [68, 4, 16, 1], [136, 4, 64, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{17}:((C_2^4\\times C_8).C_2^5)', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 272, 'autcentquo_group': '4352.1118910', 'autcentquo_hash': 1118910, 'autcentquo_nilpotent': False, 'autcentquo_order': 4352, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_{17}:(C_2^4\\times C_{16})', 'cc_stats': [[1, 1, 1], [2, 1, 3], [4, 2, 4], [4, 4, 1], [4, 136, 2], [8, 4, 4], [8, 68, 4], [17, 2, 8], [34, 2, 24], [68, 2, 32], [68, 4, 32], [136, 4, 64]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '272.14', 'commutator_count': 1, 'commutator_label': '136.9', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '17.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 296, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [4, 2, 1, 4], [4, 4, 1, 1], [4, 136, 1, 2], [8, 4, 4, 1], [8, 68, 4, 1], [17, 2, 8, 1], [34, 2, 8, 3], [68, 2, 16, 2], [68, 4, 8, 2], [68, 4, 16, 1], [136, 4, 64, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 6, 'exponent': 136, 'exponents_of_order': [6, 1], 'factors_of_aut_order': [2, 17], 'factors_of_order': [2, 17], 'faithful_reps': [], 'familial': False, 'frattini_label': '16.2', 'frattini_quotient': '68.4', 'hash': 296, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 68, 'inner_gen_orders': [2, 4, 34], 'inner_gens': [[1, 830, 1072], [277, 2, 1072], [33, 34, 16]], 'inner_hash': 14, 'inner_nilpotent': False, 'inner_order': 272, 'inner_split': True, 'inner_tex': 'D_{34}:C_4', 'inner_used': [1, 2, 3], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 138], [4, 33]], 'label': '1088.296', 'linC_count': 256, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 24, 'linQ_degree_count': 16, 'linQ_dim': 24, 'linQ_dim_count': 4, 'linR_count': 96, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C68.D8', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 22, 'number_characteristic_subgroups': 31, 'number_conjugacy_classes': 179, 'number_divisions': 23, 'number_normal_subgroups': 33, 'number_subgroup_autclasses': 58, 'number_subgroup_classes': 64, 'number_subgroups': 674, 'old_label': None, 'order': 1088, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 3], [4, 284], [8, 288], [17, 16], [34, 48], [68, 192], [136, 256]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 16, 'outer_gen_orders': [2, 2, 2, 2, 16], 'outer_gen_pows': [0, 0, 0, 0, 0], 'outer_gens': [[553, 2, 528], [1, 554, 528], [817, 2, 1072], [1, 818, 1072], [1, 2, 656]], 'outer_group': '256.55608', 'outer_hash': 55608, 'outer_nilpotent': True, 'outer_order': 256, 'outer_permdeg': 24, 'outer_perms': [357001369769647, 25852016738884976640000, 51090942171709440000, 121645100408832000, 2803205272625], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4\\times C_{16}', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 33, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [4, 5], [16, 2], [32, 5], [64, 3]], 'representations': {'PC': {'code': 1488381084151465884233196904084921646426839734116417551, 'gens': [1, 2, 5], 'pres': [7, -2, -2, -2, -2, -2, -2, -17, 3808, 11621, 36, 254, 58, 37524, 18771, 102, 44357, 22188, 124, 50182, 25101]}, 'Perm': {'d': 33, 'gens': [280664987410134249599667452274857647, 33431007390643814075175283861673647, 568171931010670179676498322571264000, 822301875607863273727030198272000000, 1969256573772393185280000, 1102673843946265328692125788897280000, 23550673235293]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{68}.D_8', 'transitive_degree': 1088, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 272, 'aut_gen_orders': [16, 34], 'aut_gens': [[1, 2], [35, 6], [31, 2]], 'aut_group': '544.242', 'aut_hash': 242, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 544, 'aut_permdeg': 19, 'aut_perms': [3007368056298528, 12904176190351327], 'aut_phi_ratio': 17.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 17, 2, 1], [17, 2, 8, 1], [34, 2, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times F_{17}', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 272, 'autcentquo_group': '272.50', 'autcentquo_hash': 50, 'autcentquo_nilpotent': False, 'autcentquo_order': 272, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{17}', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 17, 2], [17, 2, 8], [34, 2, 8]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '34.1', 'commutator_count': 1, 'commutator_label': '17.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '17.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 4, 'cyclic': False, 'derived_length': 2, 'dihedral': True, 'direct_factorization': [['2.1', 1], ['34.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 17, 1, 2], [17, 2, 8, 1], [34, 2, 8, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3, 'exponent': 34, 'exponents_of_order': [2, 1], 'factors_of_aut_order': [2, 17], 'factors_of_order': [2, 17], 'faithful_reps': [[2, 1, 8]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '68.4', 'hash': 4, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 34, 'inner_gen_orders': [2, 17], 'inner_gens': [[1, 66], [5, 2]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 34, 'inner_split': False, 'inner_tex': 'D_{17}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 16, 'irrQ_dim': 16, 'irrR_degree': 2, 'irrep_stats': [[1, 4], [2, 16]], 'label': '68.4', 'linC_count': 8, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 16, 'linQ_degree_count': 1, 'linQ_dim': 16, 'linQ_dim_count': 1, 'linR_count': 8, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'D34', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 20, 'number_divisions': 6, 'number_normal_subgroups': 7, 'number_subgroup_autclasses': 8, 'number_subgroup_classes': 10, 'number_subgroups': 58, 'old_label': None, 'order': 68, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 35], [17, 16], [34, 16]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 8, 'outer_gen_orders': [2, 8], 'outer_gen_pows': [0, 1], 'outer_gens': [[35, 66], [1, 14]], 'outer_group': '16.5', 'outer_hash': 5, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 10, 'outer_perms': [362880, 5913], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times C_8', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 19, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [16, 2]], 'representations': {'PC': {'code': 9233948687, 'gens': [1, 2], 'pres': [3, -2, -2, -17, 397, 16, 578]}, 'GLFp': {'d': 2, 'p': 17, 'gens': [4931, 78609, 78624]}, 'Perm': {'d': 19, 'gens': [357001369769646, 1, 7116376445267286]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_{34}', 'transitive_degree': 34, 'wreath_data': None, 'wreath_product': False}