Properties

Label 1088.296.68.a1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{6}c^{51}, c^{51}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{68}.D_8$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{34}$
Order: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Automorphism Group: $C_2\times F_{17}$, of order \(544\)\(\medspace = 2^{5} \cdot 17 \)
Outer Automorphisms: $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}:((C_2^4\times C_8).C_2^5)$
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(17408\)\(\medspace = 2^{10} \cdot 17 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_4\times C_{68}$
Normalizer:$C_{68}.D_8$
Minimal over-subgroups:$C_4\times C_{68}$$C_4:C_8$$C_4:Q_8$$C_4:C_8$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$

Other information

Möbius function$-34$
Projective image$D_{34}:C_4$