-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '1024.dih', 'ambient_counter': 2244, 'ambient_order': 1024, 'ambient_tex': 'C_4^2.C_2\\wr C_4', 'central': False, 'central_factor': False, 'centralizer_order': 8, 'characteristic': False, 'core_order': 32, 'counter': 40, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '1024.dih.16.g1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '16.g1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 16, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '64.211', 'subgroup_hash': 211, 'subgroup_order': 64, 'subgroup_tex': 'C_4^2:C_2^2', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1024.dih', 'aut_centralizer_order': None, 'aut_label': '16.g1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '128.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['8.h1.a1', '8.i1.a1'], 'contains': ['32.a1.a1', '32.g1.a1', '32.h1.a1', '32.h1.a2', '32.s1.a1', '32.s1.a2', '32.t1.a1', '32.u1.a1', '32.u1.b1'], 'core': '32.a1.a1', 'coset_action_label': None, 'count': 4, 'diagramx': [1652, -1, 3329, -1, 1647, -1, 3324, -1], 'generators': [62, 96, 800, 80], 'label': '1024.dih.16.g1.a1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '4.b1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '4.b1.a1', 'old_label': '16.g1.a1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '16.g1.a1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 24, 'aut_gen_orders': [4, 8, 6], 'aut_gens': [[36873, 40071, 39937, 5193], [39049, 39943, 4161, 37953], [37001, 7311, 7177, 6337], [38921, 7375, 39113, 5129]], 'aut_group': '49152.bbe', 'aut_hash': 2952015372339381660, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 49152, 'aut_permdeg': 32, 'aut_perms': [206412553074368493903095736586652692, 53044018887663722851940784792635402, 11432812583236748412291168696447284], 'aut_phi_ratio': 1536.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1], [2, 1, 4, 1], [2, 4, 8, 1], [4, 2, 12, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^4.C_2^7:S_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': None, 'autcent_hash': 8092891664598236742, 'autcent_nilpotent': True, 'autcent_order': 2048, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^8.C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '24.12', 'autcentquo_hash': 12, 'autcentquo_nilpotent': False, 'autcentquo_order': 24, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_4', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 4, 8], [4, 2, 12]], 'center_label': '8.5', 'center_order': 8, 'central_product': True, 'central_quotient': '8.5', 'commutator_count': 1, 'commutator_label': '4.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 211, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['32.34', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 4, 1, 8], [4, 2, 1, 12]], 'element_repr_type': 'GLZq', 'elementary': 2, 'eulerian_function': 105, 'exponent': 4, 'exponents_of_order': [6], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '16.14', 'hash': 211, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [1, 2, 2, 2], 'inner_gens': [[36873, 40071, 39937, 5193], [36873, 40071, 37889, 7369], [36873, 38023, 39937, 5193], [36873, 37895, 39937, 5193]], 'inner_hash': 5, 'inner_nilpotent': True, 'inner_order': 8, 'inner_split': False, 'inner_tex': 'C_2^3', 'inner_used': [2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 12]], 'label': '64.211', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 5, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C4^2:C2^2', 'ngens': 4, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 28, 'number_divisions': 28, 'number_normal_subgroups': 105, 'number_subgroup_autclasses': 24, 'number_subgroup_classes': 249, 'number_subgroups': 441, 'old_label': None, 'order': 64, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 39], [4, 24]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 24, 'outer_gen_orders': [2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1], 'outer_gen_pows': [39937, 4097, 4097, 4097, 4097, 4097, 4097, 4097, 4097, 4097, 4097, 4097, 4097, 4097, 4097], 'outer_gens': [[36873, 6279, 39937, 5193], [36873, 40071, 36937, 5193], [36873, 6279, 39937, 36937], [36873, 7311, 39937, 5193], [36873, 40071, 7177, 5193], [36873, 40071, 39937, 37953], [38921, 40071, 39937, 5193], [36873, 40071, 39937, 7241], [39049, 40071, 39937, 5193], [36873, 40071, 39937, 7369], [36873, 40071, 38017, 5193], [36873, 40071, 39937, 5193], [36873, 40071, 39937, 5193], [36873, 40071, 39937, 5193], [36873, 40071, 39937, 5193]], 'outer_group': None, 'outer_hash': 7678673216547819622, 'outer_nilpotent': False, 'outer_order': 6144, 'outer_permdeg': 20, 'outer_perms': [5455, 135582469660121141, 19586627938052730, 13075, 268986027100512142, 25991361611717490, 442724486400, 32395454087673600, 1801115993779200, 32390222834995200, 398728658179353600, 0, 0, 0, 0], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^8.S_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 10, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 12]], 'representations': {'PC': {'code': 292129084436, 'gens': [1, 2, 3, 5], 'pres': [6, 2, 2, 2, 2, 2, 2, 116, 50, 730, 88]}, 'GLZ': {'b': 3, 'd': 5, 'gens': [706204574960, 705686951426, 141602720900, 706204575934]}, 'GLZN': {'d': 2, 'p': 12, 'gens': [3251, 8645, 8995, 9889, 13613, 1801]}, 'GLZq': {'d': 2, 'q': 16, 'gens': [39937, 37959, 36873, 4161, 39049, 4225]}, 'Perm': {'d': 10, 'gens': [368045, 730929, 730800, 1174440, 1174336, 1174320]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4^2:C_2^2', 'transitive_degree': 32, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 16, 'aut_gen_orders': [4, 4, 8, 8, 4, 8, 8], 'aut_gens': [[1, 4, 32, 128], [97, 876, 32, 944], [529, 332, 32, 944], [843, 964, 96, 976], [57, 756, 32, 440], [817, 516, 32, 192], [243, 124, 32, 200], [619, 276, 96, 456]], 'aut_group': None, 'aut_hash': 6035287362225783817, 'aut_nilpotency_class': 6, 'aut_nilpotent': True, 'aut_order': 32768, 'aut_permdeg': 384, 'aut_perms': [116182181177848173868970474335437627206326070216589991997991063082147837596580638093691615874818257609132048291997760010762932331903419279470463581473368825953329272979309197795972089404366357823785080894017049736412113225719180013397390061336629998557406788712854356789997891426891363152901175973098015770015533990387664960254404288843466957259173305533244331648358132123776770713900783408816893627468922038268977832108060709025469723662067634679782148947991188817169638680381711175276898425738046128629350376425499508538625605146143161569038334047864277744632040021378904081369855152165967682869359623953264441941660364084044747823979695092825552048829246230995261688523337276879139813439089399911973803615481813228566691344899143739390220952313879413326475607491635731422923205206187297794035150239472728318298637243683021434, 65290641690567961882516094832978720091387972918709539971186141418226614943951349594093595366982010188561562506460757083291092223289968238574245626961332177893278066765940809315157635350361304572431094226425275667420469489395675294704683764684456474977655794259814003230369244604222555714043615269053020277122239262324704028938539899699407545946945423497334168061881896723054781506421352079417614518163142839834317279429368078737997991134720083607334069760982486601215458458337645251636027923691067496479710680516716103854847276941665240178778363422649473017823893390184601402278445191267490157985727465933706857511270789388960546406527247691333808783078354373531838508952000081862033466861952152653516687090331247689081058067912470413199111717218117632447623265001868547623131613733140377414835393817034683809144900814215782797, 61093869195439425890955920352810263374738323947914939503842120783855018321329554645411929257893700375769653874447741522688147639612469648365003477493217094282136444997857094978745167273744342550845514402361720601090536190827908623095258758930339615148003959203395713250782426665364908468513822177597708323078298317971919474113319569187133821073552820508712743359544594184278896445575788585909063229579229288062052117650139226823405303691359386110277394244048512652461622532333113375391513243812710329921782005778053458200063468109450528426380162308793807205233679698422624992028185496311616353398382645772403747118962899950001485508757604183786594152245040534588587325866009481648223492134931737554898428341972491703394469853168027663916321677120610400518572725076410329061809784171461069262070129529143826466762499366249412859, 169849869828058931876318073067618062186731069686785341069793953765385577888469608490146231933017090060625235408984824828564698953121313553289737251037678446450014963762080528034669524446722522022128741408047546897271505435397851279457692051290145480424136569563087642157590991537309744009645319323731405299823281328338993452084620206078178408184741595203564873586946719497471697497574710685288459356206019183868556989171334512865697511765164777746312631855125554885270583233931391091213612859696229655171881935525997957845409345880690183662088664811842312665089926125759333890026250837385333442781161181173726769648882139341575730438819814830921040658756618893575985002937657523733446805319136947939961684510928073679677242320836287008475546581897212764089311180714683624670381771395283094077463895421117839861116397919712308010, 135162371689280149436674482942570208929022451999655881292387726202548129824225764530935577517082076097880671311799473597436514476474634205811348761651651103043289492321510867816821773108255642412261053577894098332821612675581904793385555537923676170503640670845832203561298109177305514085280219822578252966850764014938583159216242876356118297455282614958350475865648292396475072811697863335632584832039814387205213726978405658757753737368510756030522255988037003303234950876709667710090081108726060828590522011422140539347277636609422640044455963657465958686446611225410492198715821063069216430730140105202242590352658050711996257451405889368679906532031620550186544759192532071748114921505496499163105805344261823090924894211931495310727800051592560856530289825881631159843175855899630535995032190001559656299485569316379262797, 80099190520791649792916087063526565735496590002974868173623778751484450990564473940688575228242358502887276682380196108152336972026022620207334682681975999410886061068878142883908741482198771678836343241779245387839189364662250694676476872322204664711867213147262866937842198334980847622601370955870527338231504337399706736212879992123812300119095898091941768533114926036056185576847048750272506630706981661862705766361570578646307472876444214753579569477768880476524862216302478046255939360548436739420149953018193378290107318446331230054565401622745647987471435698483674661997770187891009869970296369186199886250169100881003956646807084518830507273369571169977846334058944695426812316085568294515534163576183643006718256373223021243823620058491085776253525035729471434002313901278932294017490887028369422471129399881969437614, 121116202515857131693175270394903060287782326590893427296884840546681502782847368983377637768094054727219491726515702673805784498837396501777188262554444986790555631449357518333798713007489182546289972581580364585743475825813619222495595712493318454287667253198833844530375034317958509908908435206370373258256078415499847206318884780246526904798544360876566717527029131620482740436583019525421386916797435100502808850086696990085101693881497931301906515858124252546846274535451060367964363641602104203482897877334686246562581383486586635876468814826593127296784223513731306053954367316877363549980508930334251293702663360564612238381269994632698656074816324761957768297739449627310921295252255686834588472794674837360993842814552903794442529919042471615114499477268268397042357835615768844163484675079505229156758381951695335316], 'aut_phi_ratio': 64.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 1], [2, 32, 1, 1], [2, 64, 2, 1], [4, 2, 1, 2], [4, 4, 1, 1], [4, 4, 2, 1], [4, 8, 1, 1], [4, 32, 1, 1], [4, 64, 4, 1], [8, 4, 4, 1], [8, 8, 2, 1], [8, 8, 8, 1], [8, 32, 2, 1], [16, 16, 8, 1], [16, 64, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_4^3.C_2^4.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 8, 'autcentquo_group': None, 'autcentquo_hash': 6208140336951712643, 'autcentquo_nilpotent': True, 'autcentquo_order': 8192, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2^3.C_2^6.C_2^4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 4, 1], [2, 32, 1], [2, 64, 2], [4, 2, 2], [4, 4, 3], [4, 8, 1], [4, 32, 1], [4, 64, 4], [8, 4, 4], [8, 8, 10], [8, 32, 2], [16, 16, 8], [16, 64, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '512.1838', 'commutator_count': 2, 'commutator_label': '128.179', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 2244, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 1], [2, 32, 1, 1], [2, 64, 1, 2], [4, 2, 1, 2], [4, 4, 1, 3], [4, 8, 1, 1], [4, 32, 1, 1], [4, 64, 2, 2], [8, 4, 2, 2], [8, 8, 1, 2], [8, 8, 2, 4], [8, 32, 2, 1], [16, 16, 2, 4], [16, 64, 4, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 12, 'exponent': 16, 'exponents_of_order': [10], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[8, 1, 8]], 'familial': False, 'frattini_label': '256.2844', 'frattini_quotient': '4.2', 'hash': 505083576705387077, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 8, 'inner_gen_orders': [8, 8, 2, 8], 'inner_gens': [[1, 148, 32, 440], [977, 4, 96, 160], [1, 68, 32, 128], [809, 100, 32, 128]], 'inner_hash': 1034948244345798672, 'inner_nilpotent': True, 'inner_order': 512, 'inner_split': None, 'inner_tex': 'C_4^2.C_4\\wr C_2', 'inner_used': [1, 2], 'irrC_degree': 8, 'irrQ_degree': 16, 'irrQ_dim': 16, 'irrR_degree': 8, 'irrep_stats': [[1, 8], [2, 10], [4, 17], [8, 11]], 'label': '1024.dih', 'linC_count': 8, 'linC_degree': 8, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 16, 'linQ_degree_count': 4, 'linQ_dim': 16, 'linQ_dim_count': 4, 'linR_count': 8, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C4^2.C2wrC4', 'ngens': 2, 'nilpotency_class': 7, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 19, 'number_characteristic_subgroups': 27, 'number_conjugacy_classes': 46, 'number_divisions': 30, 'number_normal_subgroups': 27, 'number_subgroup_autclasses': 213, 'number_subgroup_classes': 363, 'number_subgroups': 3813, 'old_label': None, 'order': 1024, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 167], [4, 312], [8, 160], [16, 384]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2, 4], 'outer_gen_pows': [96, 312, 362, 112, 608], 'outer_gens': [[625, 36, 32, 192], [643, 28, 32, 136], [73, 660, 32, 504], [353, 532, 32, 640], [859, 468, 96, 400]], 'outer_group': '64.193', 'outer_hash': 193, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 32, 'outer_perms': [61359211852608767692984943193077998, 65480704795541004387875626219965596, 113324326726187840421577805918431882, 225069911148678500642314332909604560, 52387529969665291155189941225975086], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4:C_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 32, 'pgroup': 2, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [4, 9], [8, 9], [16, 4]], 'representations': {'PC': {'code': '237605593520588123342671235491883536806422556954066425666572975069626498067439039', 'gens': [1, 3, 6, 8], 'pres': [10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 20, 971, 4442, 912, 82, 14403, 1773, 113, 29604, 2014, 244, 1465, 175, 35207, 39697, 3227, 237, 70568, 37458, 7228, 268, 57609]}, 'Perm': {'d': 32, 'gens': [76209879730140522703248896331659647, 93185859240955738096818815502524759]}}, 'schur_multiplier': [2, 4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_4^2.C_2\\wr C_4', 'transitive_degree': 32, 'wreath_data': None, 'wreath_product': False}