Properties

Label 1024.dih.16.g1.a1
Order $ 2^{6} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}b^{7}c, c^{3}, cd^{6}, b^{4}c^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_4^2.C_2\wr C_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^3.C_2^4.C_2^5$
$\operatorname{Aut}(H)$ $C_2^4.C_2^7:S_4$, of order \(49152\)\(\medspace = 2^{14} \cdot 3 \)
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_8^2:C_2^2$
Normal closure:$C_8^2:C_2^2$
Core:$C_2\times C_4^2$
Minimal over-subgroups:$C_4^2.D_4$$C_4^2.D_4$
Maximal under-subgroups:$C_2\times C_4^2$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_4:D_4$$C_4:D_4$$C_4:D_4$$C_4:D_4$$C_4:D_4$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image not computed