Refine search
Elements of the group are displayed as permutations of degree 15.
| Group | Label | Order | Size | Centralizer | Powers | Representative | |
|---|---|---|---|---|---|---|---|
| 2P | 3P | ||||||
| $C_2^6.D_6^2$ | 1A | $1$ | $1$ | $C_2^6.D_6^2$ | 1A | 1A | $()$ |
| $C_2^6.D_6^2$ | 2A | $2$ | $1$ | $C_2^6.D_6^2$ | 1A | 2A | $(8,15)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2B | $2$ | $2$ | $C_2^5.D_6^2$ | 1A | 2B | $(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2C | $2$ | $2$ | $C_2^5.D_6^2$ | 1A | 2C | $(9,10)(12,14)$ |
| $C_2^6.D_6^2$ | 2D | $2$ | $2$ | $C_2^5.D_6^2$ | 1A | 2D | $(8,15)(12,14)$ |
| $C_2^6.D_6^2$ | 2E | $2$ | $3$ | $C_3:(C_2^5.C_2^5)$ | 1A | 2E | $(4,6)(5,7)$ |
| $C_2^6.D_6^2$ | 2F | $2$ | $3$ | $C_3:(C_2^5.C_2^5)$ | 1A | 2F | $(4,6)(5,7)(8,15)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2G | $2$ | $3$ | $C_2^4:D_4\times S_4$ | 1A | 2G | $(2,3)$ |
| $C_2^6.D_6^2$ | 2H | $2$ | $3$ | $C_2^4:D_4\times S_4$ | 1A | 2H | $(2,3)(8,15)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2I | $2$ | $4$ | $C_2^4:D_6^2$ | 1A | 2I | $(12,14)$ |
| $C_2^6.D_6^2$ | 2J | $2$ | $4$ | $C_2^4:D_6^2$ | 1A | 2J | $(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2K | $2$ | $4$ | $C_2^4:D_6^2$ | 1A | 2K | $(8,9)(10,15)(11,12)(13,14)$ |
| $C_2^6.D_6^2$ | 2L | $2$ | $4$ | $C_2^4:D_6^2$ | 1A | 2L | $(8,11)(9,12)(10,14)(13,15)$ |
| $C_2^6.D_6^2$ | 2M | $2$ | $4$ | $C_2^4:D_6^2$ | 1A | 2M | $(8,12)(9,11)(10,13)(14,15)$ |
| $C_2^6.D_6^2$ | 2N | $2$ | $6$ | $C_2^4:D_4\times D_6$ | 1A | 2N | $(6,7)$ |
| $C_2^6.D_6^2$ | 2O | $2$ | $6$ | $C_2^4:D_4\times D_6$ | 1A | 2O | $(6,7)(8,15)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2P | $2$ | $6$ | $C_2^7:D_6$ | 1A | 2P | $(2,3)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2Q | $2$ | $6$ | $C_2^7:D_6$ | 1A | 2Q | $(2,3)(9,10)(12,14)$ |
| $C_2^6.D_6^2$ | 2R | $2$ | $6$ | $C_2^7:D_6$ | 1A | 2R | $(2,3)(9,10)(11,13)$ |
| $C_2^6.D_6^2$ | 2S | $2$ | $6$ | $C_2^2:D_4^2\times S_3$ | 1A | 2S | $(4,6)(5,7)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2T | $2$ | $6$ | $C_2^2:D_4^2\times S_3$ | 1A | 2T | $(4,6)(5,7)(9,10)(12,14)$ |
| $C_2^6.D_6^2$ | 2U | $2$ | $6$ | $C_2^2:D_4^2\times S_3$ | 1A | 2U | $(4,6)(5,7)(8,15)(12,14)$ |
| $C_2^6.D_6^2$ | 2V | $2$ | $9$ | $C_2^4:D_4^2$ | 1A | 2V | $(2,3)(4,5)(6,7)$ |
| $C_2^6.D_6^2$ | 2W | $2$ | $9$ | $C_2^4:D_4^2$ | 1A | 2W | $(2,3)(4,5)(6,7)(8,15)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2X | $2$ | $12$ | $C_2^6:D_6$ | 1A | 2X | $(6,7)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2Y | $2$ | $12$ | $C_2^6:D_6$ | 1A | 2Y | $(6,7)(9,10)(12,14)$ |
| $C_2^6.D_6^2$ | 2Z | $2$ | $12$ | $C_2^6:D_6$ | 1A | 2Z | $(6,7)(9,10)(11,13)$ |
| $C_2^6.D_6^2$ | 2AA | $2$ | $12$ | $C_{12}:C_2^6$ | 1A | 2AA | $(4,5)(6,7)(12,14)$ |
| $C_2^6.D_6^2$ | 2AB | $2$ | $12$ | $C_{12}:C_2^6$ | 1A | 2AB | $(4,5)(6,7)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2AC | $2$ | $12$ | $D_6\times D_4^2$ | 1A | 2AC | $(4,5)(6,7)(8,9)(10,15)(11,12)(13,14)$ |
| $C_2^6.D_6^2$ | 2AD | $2$ | $12$ | $D_6\times D_4^2$ | 1A | 2AD | $(4,5)(6,7)(8,11)(9,12)(10,14)(13,15)$ |
| $C_2^6.D_6^2$ | 2AE | $2$ | $12$ | $D_6\times D_4^2$ | 1A | 2AE | $(4,5)(6,7)(8,12)(9,11)(10,13)(14,15)$ |
| $C_2^6.D_6^2$ | 2AF | $2$ | $12$ | $S_4\times C_2^5$ | 1A | 2AF | $(2,3)(12,14)$ |
| $C_2^6.D_6^2$ | 2AG | $2$ | $12$ | $S_4\times C_2^5$ | 1A | 2AG | $(2,3)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2AH | $2$ | $12$ | $\GL(2,\mathbb{Z}/4):C_2^3$ | 1A | 2AH | $(2,3)(8,9)(10,15)(11,12)(13,14)$ |
| $C_2^6.D_6^2$ | 2AI | $2$ | $12$ | $\GL(2,\mathbb{Z}/4):C_2^3$ | 1A | 2AI | $(2,3)(8,11)(9,12)(10,14)(13,15)$ |
| $C_2^6.D_6^2$ | 2AJ | $2$ | $12$ | $\GL(2,\mathbb{Z}/4):C_2^3$ | 1A | 2AJ | $(2,3)(8,12)(9,11)(10,13)(14,15)$ |
| $C_2^6.D_6^2$ | 2AK | $2$ | $18$ | not computed | 1A | 2AK | $(2,3)(6,7)$ |
| $C_2^6.D_6^2$ | 2AL | $2$ | $18$ | not computed | 1A | 2AL | $(2,3)(6,7)(8,15)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2AM | $2$ | $18$ | not computed | 1A | 2AM | $(2,3)(4,5)(6,7)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2AN | $2$ | $18$ | not computed | 1A | 2AN | $(2,3)(4,5)(6,7)(9,10)(12,14)$ |
| $C_2^6.D_6^2$ | 2AO | $2$ | $18$ | not computed | 1A | 2AO | $(2,3)(4,5)(6,7)(9,10)(11,13)$ |
| $C_2^6.D_6^2$ | 2AP | $2$ | $24$ | not computed | 1A | 2AP | $(6,7)(12,14)$ |
| $C_2^6.D_6^2$ | 2AQ | $2$ | $24$ | not computed | 1A | 2AQ | $(6,7)(9,10)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2AR | $2$ | $24$ | not computed | 1A | 2AR | $(6,7)(8,9)(10,15)(11,12)(13,14)$ |
| $C_2^6.D_6^2$ | 2AS | $2$ | $24$ | not computed | 1A | 2AS | $(6,7)(8,11)(9,12)(10,14)(13,15)$ |
| $C_2^6.D_6^2$ | 2AT | $2$ | $24$ | not computed | 1A | 2AT | $(6,7)(8,12)(9,11)(10,13)(14,15)$ |
| $C_2^6.D_6^2$ | 2AU | $2$ | $36$ | not computed | 1A | 2AU | $(2,3)(6,7)(11,13)(12,14)$ |
| $C_2^6.D_6^2$ | 2AV | $2$ | $36$ | not computed | 1A | 2AV | $(2,3)(6,7)(9,10)(12,14)$ |
| $C_2^6.D_6^2$ | 2AW | $2$ | $36$ | not computed | 1A | 2AW | $(2,3)(6,7)(9,10)(11,13)$ |