Properties

Label 9216.kh.6.R
Order $ 2^{9} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:D_4^2\times S_3$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2), (4,6)(5,7), (1,3,2)(4,6)(5,7)(8,15)(9,10)(11,13)(12,14), (1,2,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^6.D_6^2$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4:C_2$, of order \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ Group of order \(18874368\)\(\medspace = 2^{21} \cdot 3^{2} \)
$W$$C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3:(C_2^5.C_2^5)$
Normal closure:$C_2^5.D_6^2$
Core:$C_2^6:D_6$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_2^5.D_6^2$