Properties

Label 9216.kh.4.CE
Order $ 2^{8} \cdot 3^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:D_6^2$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2), (4,6)(5,7), (1,3,2)(4,6,5)(8,15)(9,10)(11,13)(12,14), (1,2,3)(4,7,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^6.D_6^2$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4:C_2$, of order \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $(C_6\times A_4).C_2^5.C_2^6$
$W$$C_2^3:D_6^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$(C_6\times S_4).C_2^5$
Normal closure:$(C_6\times S_4).C_2^5$
Core:$C_2^3:D_6^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_2^5.D_6^2$