Learn more

Refine search


Results (1-50 of 54 matches)

Next   displayed columns for results

Elements of the group are displayed as permutations of degree 18.

Group Label Order Size Centralizer Powers Representative
2P 3P 7P
$\SOPlus(4,8)$ 1A $1$ $1$ $\SOPlus(4,8)$ 1A 1A 1A $()$
$\SOPlus(4,8)$ 2A $2$ $126$ $C_2^3\times \SL(2,8)$ 1A 2A 2A $(1,4)(2,8)(5,6)(7,9)$
$\SOPlus(4,8)$ 2B $2$ $504$ $C_2\times \SL(2,8)$ 1A 2B 2B $(1,16)(2,11)(3,18)(4,15)(5,17)(6,13)(7,10)(8,14)(9,12)$
$\SOPlus(4,8)$ 2C $2$ $3969$ $C_2^3\wr C_2$ 1A 2C 2C $(1,9)(2,3)(4,5)(6,7)(10,12)(11,17)(13,16)(15,18)$
$\SOPlus(4,8)$ 3A $3$ $112$ $C_9\times \SL(2,8)$ 3A 1A 3A $(1,9,3)(2,7,8)(4,6,5)$
$\SOPlus(4,8)$ 3B $3$ $3136$ $C_9\times D_9$ 3B 1A 3B $(1,3,4)(2,5,7)(6,8,9)(10,11,17)(12,13,14)(15,16,18)$
$\SOPlus(4,8)$ 4A $4$ $31752$ $C_2^2\times C_4$ 2C 4A 4A $(1,15,9,18)(2,13,3,16)(4,11,5,17)(6,10,7,12)(8,14)$
$\SOPlus(4,8)$ 6A $6$ $7056$ $C_2^2\times C_{18}$ 3A 2A 6A $(1,6,2)(3,9,4)(5,8,7)(10,11)(13,17)(14,16)(15,18)$
$\SOPlus(4,8)$ 6B $6$ $28224$ $C_{18}$ 3B 2B 6B $(1,15,3,16,4,18)(2,10,5,11,7,17)(6,12,8,13,9,14)$
$\SOPlus(4,8)$ 7A1 $7$ $144$ $\GL(2,8)$ 7A2 7A3 1A $(12,15,16,17,13,14,18)$
$\SOPlus(4,8)$ 7A2 $7$ $144$ $\GL(2,8)$ 7A3 7A1 1A $(12,16,13,18,15,17,14)$
$\SOPlus(4,8)$ 7A3 $7$ $144$ $\GL(2,8)$ 7A1 7A2 1A $(12,17,18,16,14,15,13)$
$\SOPlus(4,8)$ 7B1 $7$ $5184$ $C_7\times D_7$ 7B2 7B3 1A $(1,7,8,6,9,3,2)(10,15,16,12,14,18,11)$
$\SOPlus(4,8)$ 7B2 $7$ $5184$ $C_7\times D_7$ 7B3 7B1 1A $(1,8,9,2,7,6,3)(10,16,14,11,15,12,18)$
$\SOPlus(4,8)$ 7B3 $7$ $5184$ $C_7\times D_7$ 7B1 7B2 1A $(1,6,2,8,3,7,9)(10,12,11,16,18,15,14)$
$\SOPlus(4,8)$ 7C1 $7$ $10368$ $C_7^2$ 7C2 7C3 1A $(1,9,7,3,8,2,6)(10,14,16,18,11,15,17)$
$\SOPlus(4,8)$ 7C2 $7$ $10368$ $C_7^2$ 7C3 7C1 1A $(1,7,8,6,9,3,2)(10,16,11,17,14,18,15)$
$\SOPlus(4,8)$ 7C3 $7$ $10368$ $C_7^2$ 7C1 7C2 1A $(1,3,6,7,2,9,8)(10,18,17,16,15,14,11)$
$\SOPlus(4,8)$ 9A1 $9$ $112$ $C_9\times \SL(2,8)$ 9A2 3A 9A2 $(1,6,2,9,5,7,3,4,8)$
$\SOPlus(4,8)$ 9A2 $9$ $112$ $C_9\times \SL(2,8)$ 9A4 3A 9A4 $(1,2,5,3,8,6,9,7,4)$
$\SOPlus(4,8)$ 9A4 $9$ $112$ $C_9\times \SL(2,8)$ 9A1 3A 9A1 $(1,5,8,9,4,2,3,6,7)$
$\SOPlus(4,8)$ 9B1 $9$ $3136$ $C_9\times D_9$ 9B2 3B 9B2 $(1,9,5,3,6,7,4,8,2)(10,15,14,11,16,12,17,18,13)$
$\SOPlus(4,8)$ 9B2 $9$ $3136$ $C_9\times D_9$ 9B4 3B 9B4 $(1,5,6,4,2,9,3,7,8)(10,14,16,17,13,15,11,12,18)$
$\SOPlus(4,8)$ 9B4 $9$ $3136$ $C_9\times D_9$ 9B1 3B 9B1 $(1,6,2,3,8,5,4,9,7)(10,16,13,11,18,14,17,15,12)$
$\SOPlus(4,8)$ 9C1 $9$ $6272$ $C_9^2$ 9C2 3B 9C2 $(1,7,3,4,9,6,5,8,2)(10,13,14,15,17,18,12,11,16)$
$\SOPlus(4,8)$ 9C2 $9$ $6272$ $C_9^2$ 9C4 3B 9C4 $(1,3,9,5,2,7,4,6,8)(10,14,17,12,16,13,15,18,11)$
$\SOPlus(4,8)$ 9C4 $9$ $6272$ $C_9^2$ 9C1 3B 9C1 $(1,9,2,4,8,3,5,7,6)(10,17,16,15,11,14,12,13,18)$
$\SOPlus(4,8)$ 9D1 $9$ $6272$ $C_9^2$ 9D2 3A 9D2 $(1,3,7,2,4,8,6,9,5)(10,12,14)(11,18,13)(15,17,16)$
$\SOPlus(4,8)$ 9D2 $9$ $6272$ $C_9^2$ 9D4 3A 9D4 $(1,7,4,6,5,3,2,8,9)(10,14,12)(11,13,18)(15,16,17)$
$\SOPlus(4,8)$ 9D4 $9$ $6272$ $C_9^2$ 9D1 3A 9D1 $(1,4,5,2,9,7,6,3,8)(10,12,14)(11,18,13)(15,17,16)$
$\SOPlus(4,8)$ 14A1 $14$ $9072$ $C_2^2\times C_{14}$ 7A1 14A3 2A $(1,4)(2,8)(5,6)(7,9)(12,13,15,14,16,18,17)$
$\SOPlus(4,8)$ 14A3 $14$ $9072$ $C_2^2\times C_{14}$ 7A3 14A5 2A $(1,4)(2,8)(5,6)(7,9)(12,14,17,15,18,13,16)$
$\SOPlus(4,8)$ 14A5 $14$ $9072$ $C_2^2\times C_{14}$ 7A2 14A1 2A $(1,4)(2,8)(5,6)(7,9)(12,18,14,13,17,16,15)$
$\SOPlus(4,8)$ 14B1 $14$ $36288$ $C_{14}$ 7B1 14B3 2B $(1,11,7,10,8,15,6,16,9,12,3,14,2,18)(4,17)(5,13)$
$\SOPlus(4,8)$ 14B3 $14$ $36288$ $C_{14}$ 7B3 14B5 2B $(1,10,6,12,2,11,8,16,3,18,7,15,9,14)(4,17)(5,13)$
$\SOPlus(4,8)$ 14B5 $14$ $36288$ $C_{14}$ 7B2 14B1 2B $(1,15,3,11,6,14,7,16,2,10,9,18,8,12)(4,17)(5,13)$
$\SOPlus(4,8)$ 18A1 $18$ $7056$ $C_2^2\times C_{18}$ 9A2 6A 18A7 $(1,7,4,6,5,3,2,8,9)(10,11)(13,17)(14,16)(15,18)$
$\SOPlus(4,8)$ 18A5 $18$ $7056$ $C_2^2\times C_{18}$ 9A1 6A 18A1 $(1,3,7,2,4,8,6,9,5)(10,11)(13,17)(14,16)(15,18)$
$\SOPlus(4,8)$ 18A7 $18$ $7056$ $C_2^2\times C_{18}$ 9A4 6A 18A5 $(1,8,3,6,7,9,2,5,4)(10,11)(13,17)(14,16)(15,18)$
$\SOPlus(4,8)$ 18B1 $18$ $28224$ $C_{18}$ 9B1 6B 18B7 $(1,10,9,15,5,14,3,11,6,16,7,12,4,17,8,18,2,13)$
$\SOPlus(4,8)$ 18B5 $18$ $28224$ $C_{18}$ 9B4 6B 18B1 $(1,14,7,18,9,11,4,13,5,16,8,10,3,12,2,15,6,17)$
$\SOPlus(4,8)$ 18B7 $18$ $28224$ $C_{18}$ 9B2 6B 18B5 $(1,11,8,15,7,13,3,17,9,16,2,14,4,10,6,18,5,12)$
$\SOPlus(4,8)$ 21A1 $21$ $8064$ $C_{63}$ 21A2 7A2 3A $(1,9,3)(2,7,8)(4,6,5)(10,13,17,11,16,12,14)$
$\SOPlus(4,8)$ 21A2 $21$ $8064$ $C_{63}$ 21A4 7A3 3A $(1,3,9)(2,8,7)(4,5,6)(10,17,16,14,13,11,12)$
$\SOPlus(4,8)$ 21A4 $21$ $8064$ $C_{63}$ 21A1 7A1 3A $(1,9,3)(2,7,8)(4,6,5)(10,16,13,12,17,14,11)$
$\SOPlus(4,8)$ 63A1 $63$ $8064$ $C_{63}$ 63A2 21A1 9A1 $(1,5,8,9,4,2,3,6,7)(10,12,11,13,14,16,17)$
$\SOPlus(4,8)$ 63A2 $63$ $8064$ $C_{63}$ 63A4 21A2 9A2 $(1,8,4,3,7,5,9,2,6)(10,11,14,17,12,13,16)$
$\SOPlus(4,8)$ 63A4 $63$ $8064$ $C_{63}$ 63A1 21A4 9A4 $(1,4,7,9,6,8,3,5,2)(10,14,12,16,11,17,13)$
$\SOPlus(4,8)$ 63A5 $63$ $8064$ $C_{63}$ 63A10 21A2 9A4 $(1,2,5,3,8,6,9,7,4)(10,16,13,12,17,14,11)$
$\SOPlus(4,8)$ 63A10 $63$ $8064$ $C_{63}$ 63A20 21A4 9A1 $(1,5,8,9,4,2,3,6,7)(10,13,17,11,16,12,14)$
Next   displayed columns for results