Learn more

Refine search


Results (24 matches)

  displayed columns for results

Elements of the group are displayed as permutations of degree 10.

Group Label Order Size Centralizer Powers Representative
2P 3P 5P 7P
$A_{10}$ 1A $1$ $1$ $A_{10}$ 1A 1A 1A 1A $()$
$A_{10}$ 2A $2$ $630$ $C_2^2:S_6$ 1A 2A 2A 2A $(2,9)(5,7)$
$A_{10}$ 2B $2$ $4725$ $C_2\wr S_4$ 1A 2B 2B 2B $(2,7)(3,10)(4,5)(8,9)$
$A_{10}$ 3A $3$ $240$ $C_3\times A_7$ 3A 1A 3A 3A $(2,9,10)$
$A_{10}$ 3B $3$ $8400$ $C_3^2:S_4$ 3B 1A 3B 3B $(2,8,3)(4,7,9)$
$A_{10}$ 3C $3$ $22400$ $C_3\wr C_3$ 3C 1A 3C 3C $(1,2,8)(3,9,7)(5,6,10)$
$A_{10}$ 4A $4$ $18900$ $C_4\times S_4$ 2A 4A 4A 4A $(3,10)(4,9,8,7)$
$A_{10}$ 4B $4$ $18900$ $C_4\times S_4$ 2A 4B 4B 4B $(1,2)(3,4)(5,8,10,9)(6,7)$
$A_{10}$ 4C $4$ $56700$ $C_4\wr C_2$ 2B 4C 4C 4C $(2,4,7,5)(3,9,10,8)$
$A_{10}$ 5A $5$ $6048$ $C_5\times A_5$ 5A 5A 1A 5A $(1,4,8,5,6)$
$A_{10}$ 5B $5$ $72576$ $C_5^2$ 5B 5B 1A 5B $(1,2,6,4,9)(3,7,5,8,10)$
$A_{10}$ 6A $6$ $25200$ $C_6\wr C_2$ 3A 2A 6A 6A $(1,6,5)(4,8)(7,9)$
$A_{10}$ 6B $6$ $25200$ $C_6\wr C_2$ 3B 2A 6B 6B $(1,7,4)(2,6,3)(5,10)(8,9)$
$A_{10}$ 6C $6$ $151200$ $C_2\times C_6$ 3B 2B 6C 6C $(2,4,8,7,3,9)(5,6)$
$A_{10}$ 7A $7$ $86400$ $C_{21}$ 7A 7A 7A 1A $(1,2,7,10,3,8,5)$
$A_{10}$ 8A $8$ $226800$ $C_8$ 4C 8A 8A 8A $(1,6)(2,10,4,8,7,3,5,9)$
$A_{10}$ 9A $9$ $201600$ $C_9$ 9A 3C 9A 9A $(1,6,9,2,10,7,8,5,3)$
$A_{10}$ 9B $9$ $201600$ $C_9$ 9B 3C 9B 9B $(1,7,9,4,2,8,10,5,3)$
$A_{10}$ 10A $10$ $90720$ $C_2\times C_{10}$ 5A 10A 2A 10A $(2,9)(3,4,10,6,8)(5,7)$
$A_{10}$ 12A $12$ $151200$ $C_{12}$ 6A 4A 12A 12A $(1,5,6)(3,10)(4,7,8,9)$
$A_{10}$ 12B $12$ $151200$ $C_{12}$ 6B 4B 12B 12B $(1,3,7,2,4,6)(5,9,10,8)$
$A_{10}$ 15A $15$ $120960$ $C_{15}$ 15A 5A 3A 15A $(1,8,6,4,5)(2,10,9)$
$A_{10}$ 21A1 $21$ $86400$ $C_{21}$ 21A2 7A 21A1 3A $(1,8,10,2,5,3,7)(4,6,9)$
$A_{10}$ 21A2 $21$ $86400$ $C_{21}$ 21A1 7A 21A2 3A $(1,10,5,7,8,2,3)(4,9,6)$
  displayed columns for results