Properties

Label 1814400.a.6048.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{2} $
Index $ 2^{5} \cdot 3^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times A_5$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Index: \(6048\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,4,3), (1,3)(2,5)(6,7,9,8,10), (6,8,7,10,9)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_{10}$
Order: \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_{10}$, of order \(3628800\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_4\times S_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$A_5:C_4$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$A_5:F_5$
Normal closure:$A_{10}$
Core:$C_1$
Minimal over-subgroups:$D_5\times A_5$
Maximal under-subgroups:$C_5\times A_4$$A_5$$C_5\times D_5$$C_5\times S_3$

Other information

Number of subgroups in this conjugacy class$1512$
Möbius function$0$
Projective image$A_{10}$