Subgroup ($H$) information
Description: | $C_2\times C_{10}$ |
Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Index: | \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Generators: |
$\langle(2,5)(4,8), (2,8)(4,5), (3,10,7,9,6)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $A_{10}$ |
Order: | \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
Exponent: | \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_{10}$, of order \(3628800\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $C_3:C_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Centralizer: | $C_2\times C_{10}$ | |
Normalizer: | $A_4:F_5$ | |
Normal closure: | $A_{10}$ | |
Core: | $C_1$ | |
Minimal over-subgroups: | $C_5\times A_4$ | $C_2\times D_{10}$ |
Maximal under-subgroups: | $C_{10}$ | $C_2^2$ |
Other information
Number of subgroups in this conjugacy class | $7560$ |
Möbius function | $0$ |
Projective image | $A_{10}$ |