Properties

Label 1814400.a.90720.b1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(2,5)(4,8), (2,8)(4,5), (3,10,7,9,6)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $A_{10}$
Order: \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_{10}$, of order \(3628800\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_3:C_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$A_4:F_5$
Normal closure:$A_{10}$
Core:$C_1$
Minimal over-subgroups:$C_5\times A_4$$C_2\times D_{10}$
Maximal under-subgroups:$C_{10}$$C_2^2$

Other information

Number of subgroups in this conjugacy class$7560$
Möbius function$0$
Projective image$A_{10}$