Properties

Label 685...000.a
Order \( 2^{30} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
Exponent \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{31} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $32$
Trans deg. $32$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 32 | (1,28,9,24,31,12,19,4,6,26,14,17,15,22,30,8)(2,27,10,23,32,11,20,3,5,25,13,18,16,21,29,7), (1,24)(2,23)(3,25)(4,26)(5,27,13,30,21,18,20,6,28,14,29,22,17,19)(7,9,32,11,8,10,31,12) >;
 
Copy content gap:G := Group( (1,28,9,24,31,12,19,4,6,26,14,17,15,22,30,8)(2,27,10,23,32,11,20,3,5,25,13,18,16,21,29,7), (1,24)(2,23)(3,25)(4,26)(5,27,13,30,21,18,20,6,28,14,29,22,17,19)(7,9,32,11,8,10,31,12) );
 
Copy content sage:G = PermutationGroup(['(1,28,9,24,31,12,19,4,6,26,14,17,15,22,30,8)(2,27,10,23,32,11,20,3,5,25,13,18,16,21,29,7)', '(1,24)(2,23)(3,25)(4,26)(5,27,13,30,21,18,20,6,28,14,29,22,17,19)(7,9,32,11,8,10,31,12)'])
 

Group information

Description:$C_2^{15}.A_{16}.C_2$
Order: \(685597979049984000\)\(\medspace = 2^{30} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(720720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1371195958099968000\)\(\medspace = 2^{31} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 16, $A_{16}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, nonsolvable, and rational.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 21 22 24 26 28 30 33 35 36 39 40 42 44 45 48 52 55 56 60 63 66 70 72 78 80 84 88 90 105 110 112 120 126 132 140 168 180 210 240 280
Elements 1 25412227327 851185059200 234994584334080 114415115802624 2672259121347200 437244136243200 10370763648860160 562192043212800 9195147295746048 16231012761600 48346246268436480 1098714710016000 29384406293299200 22986016826572800 52142514949324800 15812581117132800 25910505502801920 104267081318400 5047844968857600 57777503207424000 20875579490304000 30270466149580800 44090543469772800 1298481020928000 25505877196800 24162567664435200 8789717680128000 18928761663651840 9869475564748800 16231012761600000 952219415347200 16187730060902400 13184576520192000 6232708900454400 11069550703411200 37673999094251520 5441253801984000 14283291230208000 3851387456716800 9522194153472000 8789717680128000 5713316492083200 18109172809728000 7790886125568000 10474413568819200 816188070297600 6232708900454400 6121410527232000 10117331288064000 5441253801984000 5193924083712000 6733551579955200 4080940351488000 3808877661388800 5713316492083200 2856658246041600 2448564210892800 685597979049984000
Conjugacy classes   1 45 5 214 3 248 2 195 3 82 1 663 1 39 6 44 43 174 3 11 300 5 65 153 1 1 42 1 76 59 10 1 36 2 1 26 187 1 7 17 10 1 8 56 2 7 1 1 2 44 1 2 12 10 2 7 2 2 2944
Divisions 1 45 5 214 3 248 2 195 3 82 1 663 1 39 6 44 43 174 3 11 300 5 65 153 1 1 42 1 76 59 10 1 36 2 1 26 187 1 7 17 10 1 8 56 2 7 1 1 2 44 1 2 12 10 2 7 2 2 2944
Autjugacy classes 1 34 5 170 3 190 2 157 3 63 1 509 1 30 6 36 35 132 3 9 231 4 49 120 1 1 29 1 58 47 7 1 28 1 1 19 136 1 6 14 7 1 6 39 1 6 1 1 1 32 1 1 8 7 1 7 1 1 2267

Minimal presentations

Permutation degree:$32$
Transitive degree:$32$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $32$ $\langle(1,28,9,24,31,12,19,4,6,26,14,17,15,22,30,8)(2,27,10,23,32,11,20,3,5,25,13,18,16,21,29,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 32 | (1,28,9,24,31,12,19,4,6,26,14,17,15,22,30,8)(2,27,10,23,32,11,20,3,5,25,13,18,16,21,29,7), (1,24)(2,23)(3,25)(4,26)(5,27,13,30,21,18,20,6,28,14,29,22,17,19)(7,9,32,11,8,10,31,12) >;
 
Copy content gap:G := Group( (1,28,9,24,31,12,19,4,6,26,14,17,15,22,30,8)(2,27,10,23,32,11,20,3,5,25,13,18,16,21,29,7), (1,24)(2,23)(3,25)(4,26)(5,27,13,30,21,18,20,6,28,14,29,22,17,19)(7,9,32,11,8,10,31,12) );
 
Copy content sage:G = PermutationGroup(['(1,28,9,24,31,12,19,4,6,26,14,17,15,22,30,8)(2,27,10,23,32,11,20,3,5,25,13,18,16,21,29,7)', '(1,24)(2,23)(3,25)(4,26)(5,27,13,30,21,18,20,6,28,14,29,22,17,19)(7,9,32,11,8,10,31,12)'])
 
Transitive group: 32T2801272 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{15}$ . $S_{16}$ $(C_2^{15}.A_{16})$ . $C_2$ $C_2$ . $(C_2^{14}.A_{16}.C_2)$ more information

Elements of the group are displayed as permutations of degree 32.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 5 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{15}.A_{16}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

Every character has rational values, so the complex character table is the same as the rational character table below.

Rational character table

The $2944 \times 2944$ rational character table is not available for this group.