All subgroups of index up to 64696320 (order at least 161700) are shown, as well as all normal subgroups of any index.
Order 10461394944000: $A_{16}$ |
Order 653837184000: $A_{15}$ |
Order 87178291200: $S_{14}$ |
Order 43589145600: $A_{14}$ |
Order 18681062400: $C_3.S_{13}$ |
Order 9340531200: $C_3\times A_{13}$ |
Order 6227020800: $S_{13}$ |
Order 5748019200: $A_4.A_{12}.C_2$ |
Order 3113510400: $A_{13}$ |
Order 2874009600: $A_{12}\times A_4$ |
Order 2395008000: $A_{11}.S_5$ |
Order 1916006400: $C_2^2.A_{12}.C_2$ |
Order 1625702400: $A_8^2.C_2^2$ |
Order 1437004800: $C_3.S_{12}$ |
Order 1306368000: $A_{10}.A_6.C_2$ |
Order 1197504000: $A_{11}\times A_5$ |
Order 958003200: $C_2^2.A_{12}$, $C_2.A_{12}.C_2$, $C_2\times S_{12}$ |
Order 914457600: $A_9.A_7.C_2$ |
Order 812851200: $A_8\wr C_2$ x 2, $A_8.A_8.C_2$ |
Order 718502400: $C_3\times A_{12}$ |
Order 653184000: $A_{10}\times A_6$ |
Order 479001600: $A_4.S_{11}$, $C_2\times A_{12}$, $S_{12}$ |
Order 457228800: $A_9\times A_7$ |
Order 406425600: $A_8^2$ |
Order 399168000: $D_5.A_{11}.C_2$ |
Order 239500800: $A_4\times A_{11}$, $S_3\times S_{11}$, $A_{12}$ |
Order 217728000: $A_5.S_{10}$ x 2 |
Order 199584000: $A_{11}\times D_5$ |
Order 159667200: $C_2^2.S_{11}$ |
Order 130636800: $C_3:S_3.C_2.A_{10}.C_2$, $A_6.S_9$ |
Order 119750400: $C_3.S_{11}$, $C_3\times S_{11}$, $S_3\times A_{11}$ |
Order 108864000: $A_5\times A_{10}$ x 2 |
Order 101606400: $A_7.S_8$ |
Order 99792000: $C_5\times A_{11}$ |
Order 87091200: $S_4\times S_{10}$ x 2 |
Order 79833600: $C_2^2\times A_{11}$, $C_2.S_{11}$, $C_2\times S_{11}$ |
Order 65318400: $C_3:S_3.A_{10}.C_2$ x 2, $C_3:S_3.C_2\times A_{10}$, $A_6\times A_9$ |
Order 59875200: $C_3\times A_{11}$ |
Order 50803200: $A_7\times A_8$, $S_7\wr C_2$ |
Order 43545600: $A_4.S_{10}$ x 2, $A_4\times S_{10}$ x 2, $S_4\times A_{10}$ x 2, $S_5\times S_9$ |
Order 39916800: $C_2\times A_{11}$, $S_{11}$ |
Order 36288000: $D_5.S_{10}$ |
Order 32659200: $C_3^2.A_{10}.C_2$ x 2, $C_3:S_3.A_{10}$ |
Order 30481920: $\PSL(2,7)\times A_9$ |
Order 29030400: $S_6\times S_8$, $S_{10}\times D_4$ |
Order 27095040: $A_8\times C_2^3.\PSL(2,7)$ |
Order 26127360: $C_3:S_4.A_9.C_2$ |
Order 25401600: $S_7^2$, $A_7^2.C_2^2$, $A_7^2.C_4$ |
Order 23224320: $A_4^2.C_2^2.A_8.C_2$ |
Order 21772800: $A_5.S_9$ x 2, $A_4\times A_{10}$ x 2, $S_3\times S_{10}$ x 2, $A_5\times S_9$, $S_5\times A_9$ |
Order 19958400: $A_{11}$ |
Order 18144000: $D_5\times A_{10}$ |
Order 16329600: $C_3^2.A_{10}$ |
Order 14515200: $C_2^2\times S_{10}$ x 2, $C_2^2.S_{10}$ x 2, $(C_3\times A_5).A_8.C_2^2$, $A_6\times S_8$, $A_6.S_8$, $S_6\times A_8$, $C_4.S_{10}$, $C_4\times S_{10}$, $A_{10}\times D_4$ |
Order 13063680: $(C_3\times A_4).A_9.C_2$ x 2, $C_3:S_4.A_9$, $A_9.\SOPlus(4,2)$ |
Order 12700800: $A_7\times S_7$, $A_7.S_7$, $A_7\wr C_2$ |
Order 12441600: $A_4.A_6^2.D_4$ |
Order 11612160: $\PSOPlusPlus(4,3).A_8.C_2$ x 2, $A_4^2.C_2^2\times A_8$ |
Order 10886400: $A_5\times A_9$ x 2, $S_3\times A_{10}$ x 2, $C_3.S_{10}$ x 2, $C_3\times S_{10}$ x 2, $C_3.A_6.A_7.C_2^2$ |
Order 10368000: $A_6.A_5^2.D_4$ |
Order 9072000: $C_5\times A_{10}$ |
Order 8709120: $S_4\times S_9$ x 2, $C_3:D_4.A_9.C_2$ |
Order 7741440: $C_2^3:S_4.A_8.C_2$ |
Order 7620480: $C_7:C_3.A_9.C_2$ |
Order 7257600: $(C_3\times A_5).A_8.C_2$ x 3, $C_2\times S_{10}$ x 3, $C_2^2\times A_{10}$ x 2, $A_4.A_7.S_5.C_2$, $A_6\times A_8$, $F_5\times S_9$, $C_2.S_{10}$, $C_4\times A_{10}$ |
Order 6773760: $\PSL(2,7).A_8.C_2$ |
Order 6531840: $A_9.S_3^2$ x 2, $(C_3\times A_4).A_9$, $C_3^2.(C_4\times A_9)$ |
Order 6350400: $A_7^2$ |
Order 6220800: $A_4.A_6^2.C_4$, $A_4.A_6^2.C_2^2$, $A_4.A_6.A_6.C_2^2$ |
Order 5806080: $\PSOPlusPlus(4,3).A_8$, $A_4^2.A_8.C_2$, $A_4\wr C_2\times A_8$ |
Order 5443200: $C_3.A_6.A_7.C_2$ x 3, $C_3\times A_{10}$ x 2 |
Order 5184000: $A_6.A_5^2.C_4$, $A_6.A_5^2.C_2^2$, $A_5.A_5.A_6.C_2^2$, $A_5^3.S_4$ |
Order 5160960: $C_2^7.S_8$ |
Order 4838400: $S_5\times S_8$ x 2 |
Order 4354560: $S_4\times A_9$ x 3, $C_3:C_4.A_9.C_2$ x 2, $(C_2\times C_6).A_9.C_2$ x 2, $A_4.S_9$ x 2, $A_4\times S_9$ x 2, $D_6.A_9.C_2$, $C_3:D_4.A_9$, $D_6.S_9$ |
Order 4147200: $C_2^2.A_6^2.D_4$ |
Order 3981312: $A_4^2\wr C_2.C_2^2.S_4$ |
Order 3870720: $C_2^3:A_4.A_8.C_2$ x 2, $\GL(2,\mathbb{Z}/4).A_8.C_2$, $C_2^3:S_4.A_8$, $A_8\times C_2^2:S_4:C_2$ |
Order 3810240: $\SL(2,8).C_3\times A_7$, $C_7:C_3\times A_9$ |
Order 3628800: $A_4.A_7.S_5$ x 2, $S_{10}$ x 2, $A_4.A_7.A_5.C_2$, $(C_3\times A_5).A_8$, $A_9:F_5$, $D_5\times S_9$, $F_5\times A_9$, $S_6\times S_7$, $C_2\times A_{10}$ |
Order 3612672: $C_2^6.\GL(3,2)\wr C_2$ x 2 |
Order 3386880: $A_8\times \PSL(2,7)$ x 2, $A_8\times F_8:C_3$, $A_7\times C_2^3.\PSL(2,7)$ |
Order 3265920: $C_3^2:S_9$ x 2, $C_3^3.S_4.A_7.C_2$, $C_3:S_3\times A_9$ |
Order 3110400: $A_4.A_6.A_6.C_2$ x 2, $A_4.A_6^2.C_2$, $(C_3\times A_6^2).D_4$ |
Order 2903040: $A_4^2.A_8$, $S_8\times S_3\wr C_2$, $C_3.(S_4\times S_8)$, $(A_4^2\times A_7).D_4$, $S_9\times D_4$ |
Order 2721600: $C_3.A_6.A_7$ |
Order 2592000: $A_5.A_5.A_6.C_2$ x 2, $A_6.A_5^2.C_2$, $A_5^3.A_4$ |
Order 2580480: $C_2\wr C_2^2.A_8.C_2$, $C_2^7.A_8$ |
Order 2540160: $C_7.A_9.C_2$ |
Order 2419200: $A_5\times S_8$ x 2, $A_5.S_8$ x 2, $S_5\times A_8$ x 2, $C_3:F_5.A_8.C_2$, $C_2^2.A_7.A_5.C_2^2$ |
Order 2177280: $A_4\times A_9$ x 3, $S_3\times S_9$ x 3, $C_2\times C_3:S_9$ x 2, $C_6.A_9.C_2$, $C_3:C_4.A_9$, $(C_2\times C_6).A_9$, $D_6.A_9$, $C_6\times S_9$ |
Order 2073600: $C_2.A_6^2.D_4$ x 2, $S_6^2.C_2^2$ x 2, $C_2^2.A_6^2.C_2^2$, $C_2^2.A_6.A_6.C_2^2$, $A_6:S_6.D_4$ |
Order 1990656: $A_4^2\wr C_2.C_2^2.A_4$ |
Order 1935360: $A_4:C_4.A_8.C_2$ x 2, $(C_2^2\times A_4).A_8.C_2$ x 2, $C_2\times S_4\times S_8$ x 2, $\GL(2,\mathbb{Z}/4).A_8$, $C_2^3:A_4.A_8$, $C_2^2\wr C_2:C_3\times A_8$, $C_2^2:S_4\times A_8$, $C_2^2:S_4.A_8$, $(C_2\times S_4).A_8.C_2$ |
Order 1814400: $C_3.(S_5\times S_7)$ x 2, $A_4.A_7.A_5$, $C_5:S_9$, $C_5\times S_9$, $D_5\times A_9$, $A_6\times S_7$, $A_6:S_7$, $S_6\times A_7$, $A_{10}$ |
Order 1806336: $C_2^6.\PSL(2,7).\PSL(2,7)$ x 2 |
Order 1728000: $A_5^3.D_4$ x 2 |
Order 1632960: $C_3^3:C_2^2:C_3.A_7.C_2$ x 2, $C_3^3.S_4.A_7$, $C_3^2\times A_9$ |
Order 1555200: $A_4.A_6.A_6$, $C_3.S_6^2$, $(C_3\times A_6^2):C_4$, $C_3\times A_6^2:C_2^2$ |
Order 1451520: $S_3^2.S_8$ x 2, $S_3^2\times S_8$ x 2, $C_2^2\times S_9$ x 2, $C_2^2.S_9$ x 2, $S_3\wr C_2\times A_8$, $C_3^2.(C_4\times S_8)$, $C_3:S_4\times A_8$, $(C_3\times A_4).S_8$, $C_3\times A_4:S_8$, $A_4^2.C_2^2\times A_7$, $(A_4^2\times A_7).C_4$, $C_4\times S_9$, $C_4.A_9.C_2$, $A_9\times D_4$, $A_7.S_4^2$, $C_3:S_3.C_2.A_8.C_2$ |
Order 1382400: $C_2^4.A_6.A_5.C_2^2$ |
Order 1327104: $A_4^2\wr C_2.C_4.D_4$ |
Order 1296000: $A_5.A_5.A_6$, $A_5^3:S_3$ |
Order 1290240: $Q_8:C_2^2.A_8.C_2$ x 2, $C_2^2\wr C_2.A_8.C_2$ x 2, $C_2^2.D_4.A_8.C_2$ x 2, $A_8\times C_2\wr C_2^2$ |
Order 1270080: $C_7\times A_9$, $A_7\times \SL(2,8)$ |
Order 1209600: $C_2^2.A_7.S_5$ x 2, $C_2.A_7.S_5.C_2$ x 2, $(C_3\times D_5).A_8.C_2$ x 2, $A_5\times A_8$ x 2, $C_3:F_5.A_8$, $C_2^2.A_7.A_5.C_2$, $C_2.A_7.A_5.C_2^2$, $A_4:F_5.A_7.C_2$, $C_2\times S_5\times S_7$ |
Order 1140480: $A_4.M_{12}$ |
Order 1128960: $F_8\times A_8$ |
Order 1088640: $C_3:S_9$ x 3, $S_3\times A_9$ x 2, $C_3\times S_9$ x 2, $\ASL(2,3).A_7.C_2$, $C_3:S_3\wr C_2.A_7.C_2$, $C_6\times A_9$ |
Order 1036800: $S_6\wr C_2$ x 4, $A_6^2.C_2^3$ x 3, $C_2^2.A_6.A_6.C_2$ x 2, $C_2.A_6.A_6.C_2^2$ x 2, $C_2\times A_6^2.C_4$ x 2, $A_4.(S_5\times S_6)$ x 2, $C_3:S_3.C_2.A_5^2.D_4$, $C_2^2.A_6^2.C_2$, $C_2\times S_6^2$ |
Order 995328: $A_4\wr A_4.C_2^2$ x 2, $C_2^6.C_3^3.A_4^2.C_2^2$ |
Order 967680: $S_4\times S_8$ x 6, $(C_2\times A_4).S_8$ x 3, $(C_2\times S_4).A_8$ x 3, $C_2\times A_4\times S_8$ x 2, $\SL(2,3).A_8.C_2$, $C_2^4:C_3.A_8$, $A_4:C_4.A_8$, $(C_2^2\times A_4).A_8$, $(C_2\times A_4).A_8.C_2$, $C_2^3.\PSL(2,7)\times S_6$, $C_3.(D_4\times S_8)$, $C_2^3.(S_4\times S_7)$ |
Order 907200: $C_3:S_5\times A_7$ x 2, $\GL(2,4):S_7$ x 2, $C_3\times A_5.A_7.C_2$ x 2, $C_5\times A_9$, $A_6\times A_7$ |
Order 864000: $A_5^3:C_4$ x 2, $A_5^3:C_2^2$ x 2, $A_5.S_5^2$ x 2, $D_5.A_5.A_6.C_2^2$ |
Order 846720: $A_8:F_7$, $S_7\times \GL(3,2)$, $\GL(3,2):S_7$ |
Order 829440: $S_6\times S_4\wr C_2$ |
Order 816480: $C_3^3:C_2^2:C_3.A_7$, $C_3\wr C_3:C_2.A_7.C_2$ |
Order 806400: $F_5\times S_8$ |
Order 777600: $A_6^2:S_3$, $A_6^2:C_6$, $A_6^2:C_6$ |
Order 774144: $A_4^2.C_2^2\times C_2^3.\PSL(2,7)$ |
Order 725760: $C_2\times S_9$ x 3, $A_8:S_3^2$ x 2, $C_3\times S_3\times S_8$ x 2, $A_8:S_3^2$ x 2, $S_3^2\times A_8$ x 2, $S_3\times S_4\times S_7$ x 2, $C_2^2\times A_9$ x 2, $A_4^2.S_7$, $A_7\times \PSOPlus(4,3)$, $C_3:S_3\times S_8$, $C_3^2:C_4\times A_8$, $(C_3^2\times A_8):C_4$, $C_3\times A_4\times A_8$, $A_4\wr C_2\times A_7$, $C_4\times A_9$, $A_9:C_4$ |
Order 691200: $C_2^4.A_6.S_5$ x 2, $S_4\times S_5\wr C_2$ x 2, $C_2^4.A_6.A_5.C_2$ |
Order 663552: $A_4^2:\POPlus(4,3).D_4$ x 2, $C_2^8.S_3^2\wr C_2$ x 2, $C_2^8.C_3^2.D_6\wr C_2$, $A_4^2:\POPlus(4,3).D_4$, $A_4^2:\POPlus(4,3).C_2^3$ |
Order 648000: $A_5\wr C_3$ |
Order 645120: $(C_2\times D_4).A_8.C_2$ x 5, $C_2^2:C_4.A_8.C_2$ x 3, $D_4:C_2.A_8.C_2$ x 2, $C_2^2.D_4\times A_8$ x 2, $Q_8:C_2^2.A_8$, $C_2^4.A_8.C_2$, $C_2^2\wr C_2\times A_8$, $C_2^2\wr C_2.A_8$, $C_2\times S_8\times D_4$, $C_2^7.S_7$ |
Order 622080: $C_6^2.D_{12}.A_6.C_2$ |
Order 604800: $S_5\times S_7$ x 3, $(D_5\times A_4).A_7.C_2$ x 2, $C_2\times A_5:S_7$ x 2, $C_{15}.A_8.C_2$, $C_5\times C_3.A_8.C_2$, $C_2^2.A_7.A_5$, $C_2.A_7.S_5$, $C_2.A_7.A_5.C_2$, $A_4:F_5.A_7$, $(C_3\times D_5).A_8$, $C_2\times S_5\times A_7$, $C_2\times A_5\times S_7$ |
Order 552960: $(S_4\times C_2^5).S_6$ |
Order 544320: $C_3^3:C_2^2.A_7.C_2$ x 4, $(C_3\times C_3:S_3.C_2).A_7.C_2$ x 2, $C_3\times A_9$ x 2, $\ASL(2,3).A_7$, $C_3:S_3\wr C_2.A_7$, $A_6\times {}^2G(2,3)$ |
Order 518400: $A_6^2:C_2^2$ x 5, $C_3:S_3.A_5^2.D_4$ x 2, $A_4.S_5\times A_6$ x 2, $A_4.(A_5\times S_6)$ x 2, $A_6^2.C_2^2$ x 2, $S_6^2$ x 2, $C_3^2.S_5^2:C_2^2$ x 2, $A_6^2:C_2^2$ x 2, $A_6^2:C_4$ x 2, $A_6.S_5\times A_4$ x 2, $C_3:S_3.C_2.A_5^2.C_4$, $C_3:S_3.C_2.A_5^2.C_2^2$, $C_3:S_3.C_2.A_5.S_5.C_2$, $C_2^2.A_6.A_6$, $C_2.A_6.A_6.C_2$, $A_6.A_6.C_2^2$, $A_6^2.C_2^2$, $S_3\times S_5\times S_6$ |
Order 497664: $C_2^6.C_3^3.A_4^2.C_2$ x 3, $A_4\wr A_4.C_2$ x 2, $A_4\wr A_4.C_2$ x 2, $A_4\wr A_4.C_2$ x 2, $C_2^8:(C_3^4:\SL(2,3))$ |
Order 483840: $S_4\times A_8$ x 6, $A_4:S_8$ x 4, $C_2\times A_4\times A_8$ x 3, $A_4\times S_8$ x 3, $D_6.S_8$ x 2, $\SL(2,3).A_8$, $(C_2^2\times C_6).\PSL(2,7).S_5$, $A_4.(D_4\times S_7)$, $(C_2\times C_6):S_8$, $(C_2\times C_6).S_8$, $C_2^3:A_4.A_7.C_2$, $(Q_8\times A_7).S_4$, $C_2^3:S_4\times A_7$, $C_2^3:S_4\times A_7$, $D_6:S_8$, $A_6\times C_2^3.\PSL(2,7)$, $(C_6\times S_8):C_2$, $C_3:(C_4\times S_8)$, $A_8\times C_3:D_4$ |
Order 475200: $M_{11}\times A_5$ |
Order 466560: $A_6:S_3\wr S_3$, $C_3:S_3^4:S_5$ |
Order 453600: $A_7\times \GL(2,4)$ x 2 |
Order 432000: $D_5.A_5.A_6.C_2$ x 3, $A_5^2:S_5$ x 3, $A_5^2:S_5$ x 2 |
Order 423360: $A_7\times \GL(3,2)$ x 2, $F_8:C_3\times A_7$, $C_7:C_3\times A_8$ |
Order 414720: $S_6\times S_4^2$ x 2, $A_4^2.D_6.C_2.S_5$, $S_4^2.S_6$, $S_6\times \POPlus(4,3)$, $A_4^2.(C_4\times S_6)$, $(A_4^2\times A_6).D_4$, $(A_4^2\times A_6).D_4$, $A_6\times A_4^2.D_4$ |
Order 408240: $C_3\wr C_3.A_7.C_2$ x 2, $C_3\wr C_3:C_2.A_7$ |
Order 403200: $C_2^2:F_5.A_7.C_2$, $A_8:F_5$, $D_5\times S_8$, $F_5\times A_8$ |
Order 388800: $C_3\times A_6^2$ |
Order 387072: $A_4\wr C_2\times C_2^3.\PSL(2,7)$ x 2, $A_4^2.C_2^4.\PSL(2,7)$ |
Order 380160: $C_2^2.M_{12}$ |
Order 373248: $C_3^4.C_2^3.A_4^2.C_2^2$ |
Order 362880: $C_3:S_4\times S_7$ x 2, $S_4\times C_3:S_7$ x 2, $S_3\times A_4\times S_7$ x 2, $C_3:(S_4\times S_7)$ x 2, $C_3\times S_4\times S_7$ x 2, $S_3\times S_4\times A_7$ x 2, $C_3\times S_3\times A_8$ x 2, $S_3\times A_4:S_7$ x 2, $C_3^2:S_8$ x 2, $S_9$ x 2, $\PSU(3,2).A_7.C_2$, $C_3.A_6.\PSL(2,7).C_2$, $C_3^2\times S_8$, $C_3^2:S_8$, $A_4^2\times A_7$, $C_3:S_3\times A_8$, $S_7\times \SOPlus(4,2)$, $C_2\times A_9$ |
Order 345600: $A_5^2.\GL(2,\mathbb{Z}/4)$ x 3, $A_5.(D_4\times S_6)$ x 2, $S_4\times S_5^2$ x 2, $(A_4\times A_5^2).D_4$ x 2, $A_4\times S_5\wr C_2$ x 2, $S_5^2.S_4$ x 2, $S_4\times A_5^2:C_4$ x 2, $S_4\times \POPlus(4,5)$ x 2, $C_2^4.A_6.A_5$ |
Order 331776: $C_2^8.S_3\wr S_3$ x 2, $A_4^2\wr C_2.D_4$ x 2, $A_4^2\wr C_2.D_4$ x 2, $A_4^2\wr C_2.D_4$ x 2, $A_4^2\wr C_2.D_4$ x 2, $C_2^8.C_3^4.C_2^4$, $C_2^8.C_3^4.C_2^2:C_4$, $A_4^2.C_2^4.D_6:D_6$, $A_4^2.A_4^2.C_2^2:C_4$, $(C_2\times S_4^3).D_6$, $A_4^2.S_4^2:C_2^2$, $A_4^2:\POPlus(4,3).C_2^2$ |
Order 322560: $(C_2\times C_4).A_8.C_2$ x 5, $C_2^3.S_8$ x 5, $D_4\times S_8$ x 4, $C_2^2:C_4.A_8$ x 3, $C_2\times A_8\times D_4$ x 3, $C_2^3.A_8.C_2$ x 2, $C_2^3\times S_8$ x 2, $C_2\times C_4:S_8$ x 2, $C_2^6.S_7$ x 2, $C_2^4.A_8$ x 2, $Q_8.A_8.C_2$, $D_4:C_2.A_8$, $D_4.A_8.C_2$, $C_2^4.A_8$, $C_2\times C_4\times S_8$, $C_2^3.(D_4\times S_7)$, $C_2^7.A_7$ |
Order 311040: $A_4:S_3^2.A_6.C_2$ x 4, $(A_4\times C_3:S_3.C_2).A_6.C_2$ x 2, $C_6^2.D_{12}.A_6$ |
Order 302400: $A_5:S_7$ x 3, $(C_5\times A_4).A_7.C_2$ x 2, $A_5\times S_7$ x 2, $S_5\times A_7$ x 2, $C_{15}.A_8$, $(D_5\times A_4).A_7$, $C_2\times A_5\times A_7$, $C_{15}:(C_4\times S_7)$ |
Order 288000: $D_5^2.C_4.A_6.C_2$, $(D_5\times A_5^2).D_4$ |
Order 285120: $C_3\times M_{12}$ |
Order 282240: $C_7:S_8$ |
Order 276480: $S_6\times C_2\wr S_4$, $(A_4\times C_2^5).S_6$, $(S_4\times C_2^5).A_6$, $(A_4\times C_2^5).S_6$ |
Order 272160: $(C_3\times C_3:S_3).A_7.C_2$ x 6, $C_3^3:C_2^2.A_7$ x 2, $\He_3:C_2.A_7.C_2$, $(C_3\times C_3:S_3.C_2).A_7$ |
Order 259200: $C_3^2.A_5^2.D_4$ x 4, $A_5^2:\SOPlus(4,2)$ x 4, $C_3:S_3.A_5.A_5.C_2^2$ x 3, $A_6:S_6$ x 3, $A_6.A_6.C_2$ x 2, $A_4\times A_5\times A_6$ x 2, $C_3:(S_5\times S_6)$ x 2, $C_3:S_3.A_5^2.C_2^2$ x 2, $A_6\wr C_2$ x 2, $C_3:S_3.C_2.A_5^2.C_2$, $C_3:S_3.C_2.A_5.S_5$, $C_3:S_3.C_2.A_5.A_5.C_2$, $C_3:S_3.A_5^2.C_4$, $C_3:S_3.A_5^2.C_2^2$, $S_3\times S_5\times A_6$, $S_5\times C_3:S_6$, $C_3\times S_5\times S_6$, $C_3:S_5\times S_6$, $S_3\times A_5\times S_6$, $S_3\times A_5:S_6$, $C_2\times A_6^2$, $A_6\times S_6$, $C_3^2:(C_2\times A_5^2:C_4)$ |
Order 258048: $C_2^4:C_3.C_2^5.\PSL(2,7)$, $C_2^3:A_4.C_2^4.\PSL(2,7)$, $C_2^3.\PSL(2,7)\times C_2^2:S_4:C_2$ |
Order 254016: $\SL(2,8).C_3\times \PSL(2,7)$ x 2 |
Order 248832: $A_4\wr A_4$ x 2, $C_2^6.C_3^3.A_4^2$, $A_4^3.(S_3\times S_4)$, $A_4^3.(S_3\times S_4)$ |
Order 241920: $S_3\times S_8$ x 6, $A_4\times A_8$ x 4, $C_6:S_8$ x 3, $D_6\times A_8$ x 2, $C_6\times S_8$ x 2, $C_2^2:S_4\times A_7$ x 2, $C_2\times S_4\times S_7$ x 2, $\PSL(2,7)\times A_4.S_5$, $(C_2^2\times C_6).\PSL(2,7).A_5$, $C_3:C_4\times A_8$, $C_2\times C_6\times A_8$, $A_8:C_{12}$, $A_4\times C_2^2:S_7$, $(C_2^2\times A_4).S_7$, $Q_8:A_4\times A_7$, $C_2^3:A_4\times A_7$, $A_7\times \GL(2,\mathbb{Z}/4)$, $A_4:(C_4\times S_7)$, $(C_2\times S_4):S_7$, $A_7:\GL(2,\mathbb{Z}/4)$, $C_4.(D_6\times S_7)$, $S_6\times \PGL(2,7)$ |
Order 233280: $C_3^3:(A_4\times S_6)$, $A_6\times C_3^3:S_4$, $(C_3^3\times A_6):S_4$, $C_3:S_3^4:A_5$ |
Order 230400: $C_2^4.S_5^2$ x 2, $C_2^4:C_5:C_4.A_6.C_2$, $A_5^2.D_4^2$ |
Order 225792: $C_2^3:\GL(3,2)^2$ x 3, $F_8:C_3.C_2^3.\PSL(2,7)$ x 2 |
Order 221184: $C_2^5.C_6^2.(D_4\times S_4)$ |
Order 216000: $(C_5\times A_5).A_6.C_2$ x 2, $A_5^3$ x 2, $D_5.A_5.A_6$ |
Order 211680: $F_7\times S_7$ |
Order 207360: $A_6.S_4^2$ x 3, $A_4\times S_6\times S_4$ x 3, $A_4^2.D_6.S_5$ x 2, $A_4^2.C_6.C_2.S_5$ x 2, $(C_3\times A_4^2).C_4.S_5$ x 2, $A_6.S_4^2$ x 2, $A_6.S_4^2$ x 2, $S_6\times \PSOPlus(4,3)$ x 2, $C_2^2:S_3\wr C_2.A_6.C_2$, $A_4^2.D_6.C_2.A_5$, $A_4^2:(C_2\times S_6)$, $A_4^2:(C_2\times S_6)$, $(A_4^2\times A_6):C_4$, $A_4\wr C_2\times S_6$, $A_4^2:C_4\times A_6$, $A_6\times \POPlus(4,3)$ |
Order 204120: $C_3\wr C_3.A_7$ |
Order 201600: $(C_2\times F_5).A_7.C_2$ x 3, $C_2^2\times D_5.A_7.C_2$, $C_2^2:F_5.A_7$, $(C_2^2\times D_5).A_7.C_2$, $C_2\times F_5\times S_7$, $C_5:S_8$, $C_5\times S_8$, $D_5\times A_8$ |
Order 193536: $A_4^2.C_2^3.\PSL(2,7)$, $A_4^2.C_2^2.\SO(3,7)$ |
Order 190080: $C_2\times M_{12}$ |
Order 186624: $C_3^4.C_2^5.A_4.S_3$, $C_3^4.C_2^3.A_4^2.C_2$, $C_3^4.(C_2^3\times A_4).A_4.C_2$ |
Order 184320: $C_2^7.C_2.A_6.C_2$ |
Order 181440: $S_3^2\times S_7$ x 3, $(C_3\times A_4):S_7$ x 2, $C_3\times A_4\times S_7$ x 2, $C_3:S_4\times A_7$ x 2, $C_3\times S_4\times A_7$ x 2, $C_3\times A_4:S_7$ x 2, $S_3\times A_4\times A_7$ x 2, $A_4\times C_3:S_7$ x 2, $A_7:\SOPlus(4,2)$ x 2, $S_3^2:S_7$ x 2, $\PSU(3,2).A_7$, $C_3:S_3.C_2.A_7.C_2$, $C_3.A_6.\PSL(2,7)$, $A_6\times \SL(2,8)$, $C_3^2\times A_8$, $S_5\times {}^2G(2,3)$, $C_3^2:C_4\times S_7$, $A_7\times \SOPlus(4,2)$, $A_9$ |
Order 172800: $A_4:S_5^2$ x 4, $(A_4\times A_5^2):C_4$ x 3, $A_4\times \POPlus(4,5)$ x 3, $A_5\times C_2^2:S_6$ x 2, $C_2^2\times A_5:S_6$ x 2, $A_6\times C_2^2:S_5$ x 2, $(C_2\times S_5):S_6$ x 2, $A_4\times S_5^2$ x 2, $S_4\times \PSOPlus(4,5)$ x 2, $S_4\times A_5\times S_5$ x 2, $A_4:S_5^2$ x 2, $C_2\times S_5\times S_6$ x 2, $A_4\times A_5^2:C_4$ x 2, $\SOPlus(4,4):S_4$ x 2, $A_5^2:(C_2\times S_4)$ x 2, $A_5:(C_4\times S_6)$ x 2, $(C_2\times S_6):S_5$ x 2, $S_4\times \SOPlus(4,4)$ x 2, $S_5^2:D_6$ x 2, $A_4:(F_5\times S_6)$ |
Order 172032: $C_2^4.C_2^6:\GL(3,2)$ |
Order 165888: $C_2^8.C_3^4.C_2^3$ x 4, $C_2^8.C_3.S_3^3$ x 2, $C_2^2.A_4^3.S_4$ x 2, $C_2^8:(C_3^3:S_4)$ x 2, $C_2^8:(C_3^3:S_4)$ x 2, $C_2^8.C_3^3:D_{12}$ x 2, $C_2^8:S_3\wr C_3$ x 2, $C_2^8.C_3^3:(C_4\times S_3)$ x 2, $A_4^2\wr C_2.C_2^2$ x 2, $A_4^2\wr C_2.C_4$ x 2, $A_4^2.S_4\wr C_2$ x 2, $A_4^2\wr C_2.C_2^2$ x 2, $C_2^8.C_3^3.D_6.C_2$, $A_4^2.A_4^2.D_4$, $A_4^2.A_4.D_4\times A_4$, $A_4:S_4^2.S_4$, $S_4^3.D_6$, $C_2^8.C_3^4:Q_8$, $C_2^8.C_3^4:D_4$, $A_4^3.(C_4\times S_4)$, $A_4^3.\GL(2,\mathbb{Z}/4)$, $C_2^2\times A_4^3:S_4$, $C_2^7.S_3\wr S_3$, $A_4^3.\GL(2,\mathbb{Z}/4)$, $(C_2\times S_4^3).C_6$, $A_4^2.(C_2\times A_4^2:C_4)$, $A_4^2\wr C_2.C_2^2$ |
Order 16384: $C_2^7.C_2\wr D_4$ |
Order 729: $C_3^5:C_3$ |
Order 125: $C_5^3$ |
Order 49: $C_7^2$ |
Order 13: $C_{13}$ |
Order 11: $C_{11}$ |
Order 1: $C_1$ |