Properties

Label 342...000.a
Order \( 2^{29} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
Exponent \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{30} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $32$
Trans deg. $32$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 32 | (1,16,14,3,11,18,6,21,8,28,20,24)(2,15,13,4,12,17,5,22,7,27,19,23)(9,32,25,30)(10,31,26,29), (1,24,12,17,7,15,3,30)(2,23,11,18,8,16,4,29)(5,19,26,22,13)(6,20,25,21,14)(9,32,10,31)(27,28) >;
 
Copy content gap:G := Group( (1,16,14,3,11,18,6,21,8,28,20,24)(2,15,13,4,12,17,5,22,7,27,19,23)(9,32,25,30)(10,31,26,29), (1,24,12,17,7,15,3,30)(2,23,11,18,8,16,4,29)(5,19,26,22,13)(6,20,25,21,14)(9,32,10,31)(27,28) );
 
Copy content sage:G = PermutationGroup(['(1,16,14,3,11,18,6,21,8,28,20,24)(2,15,13,4,12,17,5,22,7,27,19,23)(9,32,25,30)(10,31,26,29)', '(1,24,12,17,7,15,3,30)(2,23,11,18,8,16,4,29)(5,19,26,22,13)(6,20,25,21,14)(9,32,10,31)(27,28)'])
 

Group information

Description:$C_2^{15}.A_{16}$
Order: \(342798989524992000\)\(\medspace = 2^{29} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(720720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(685597979049984000\)\(\medspace = 2^{30} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $A_{16}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and perfect (hence nonsolvable).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 21 22 24 26 28 30 33 35 36 39 40 42 44 45 48 55 56 60 63 66 70 72 78 80 84 90 105 110 120 126 140 168 210
Elements 1 13017721087 851185059200 126089221789440 114415115802624 1611430667745920 437244136243200 5567422284103680 562192043212800 1573205938956288 16231012761600 24236911835136000 1098714710016000 15345242744832000 22986016826572800 4939638217113600 5933304682905600 8771152344514560 104267081318400 2450882927001600 29369545261056000 7691002970112000 14343867688550400 35035201335214080 1298481020928000 25505877196800 8331919884288000 8789717680128000 10391094369976320 4003123809484800 5843164594176000 952219415347200 9522194153472000 6232708900454400 3315764035584000 24214642163712000 5441253801984000 9089367146496000 1402823245824000 4761097076736000 8789717680128000 4284987369062400 9692233334784000 6665535907430400 816188070297600 6232708900454400 5356234211328000 5441253801984000 1836423158169600 2040470175744000 5713316492083200 342798989524992000
Conjugacy classes   1 25 5 107 3 136 2 100 3 46 1 324 1 24 7 24 29 82 3 7 149 3 32 91 1 1 16 2 38 35 4 1 18 2 12 84 2 7 11 4 2 4 22 7 2 2 20 2 4 4 14 1526
Divisions 1 25 5 107 3 136 2 100 3 46 1 324 1 24 6 24 29 82 3 7 149 3 32 90 1 1 16 1 38 35 4 1 18 1 12 84 1 5 11 4 1 4 22 5 1 1 20 1 4 4 7 1506
Autjugacy classes 1 24 5 104 3 134 2 96 3 45 1 320 1 22 6 22 27 81 3 7 147 3 31 88 1 1 16 1 38 35 4 1 18 1 12 83 1 5 11 4 1 4 22 5 1 1 20 1 4 4 7 1478

Minimal presentations

Permutation degree:$32$
Transitive degree:$32$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $32$ $\langle(1,16,14,3,11,18,6,21,8,28,20,24)(2,15,13,4,12,17,5,22,7,27,19,23)(9,32,25,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 32 | (1,16,14,3,11,18,6,21,8,28,20,24)(2,15,13,4,12,17,5,22,7,27,19,23)(9,32,25,30)(10,31,26,29), (1,24,12,17,7,15,3,30)(2,23,11,18,8,16,4,29)(5,19,26,22,13)(6,20,25,21,14)(9,32,10,31)(27,28) >;
 
Copy content gap:G := Group( (1,16,14,3,11,18,6,21,8,28,20,24)(2,15,13,4,12,17,5,22,7,27,19,23)(9,32,25,30)(10,31,26,29), (1,24,12,17,7,15,3,30)(2,23,11,18,8,16,4,29)(5,19,26,22,13)(6,20,25,21,14)(9,32,10,31)(27,28) );
 
Copy content sage:G = PermutationGroup(['(1,16,14,3,11,18,6,21,8,28,20,24)(2,15,13,4,12,17,5,22,7,27,19,23)(9,32,25,30)(10,31,26,29)', '(1,24,12,17,7,15,3,30)(2,23,11,18,8,16,4,29)(5,19,26,22,13)(6,20,25,21,14)(9,32,10,31)(27,28)'])
 
Transitive group: 32T2801269 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{15}$ . $A_{16}$ $C_2$ . $(C_2^{14}.A_{16})$ more information

Elements of the group are displayed as permutations of degree 32.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 4 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{15}.A_{16}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{11}.C_2^6.C_2^6.C_2^5.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^5:C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^3$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1526 \times 1526$ character table is not available for this group.

Rational character table

The $1506 \times 1506$ rational character table is not available for this group.