Properties

Label 8370.b.225990.1
Conductor $8370$
Discriminant $-225990$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{4}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = -5x^6 + 15x^5 - 38x^4 + 50x^3 - 57x^2 + 33x - 16$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = -5x^6 + 15x^5z - 38x^4z^2 + 50x^3z^3 - 57x^2z^4 + 33xz^5 - 16z^6$ (dehomogenize, simplify)
$y^2 = -20x^6 + 60x^5 - 151x^4 + 202x^3 - 225x^2 + 134x - 63$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-16, 33, -57, 50, -38, 15, -5]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-16, 33, -57, 50, -38, 15, -5], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([-63, 134, -225, 202, -151, 60, -20]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(8370\) \(=\) \( 2 \cdot 3^{3} \cdot 5 \cdot 31 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-225990\) \(=\) \( - 2 \cdot 3^{6} \cdot 5 \cdot 31 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(46596\) \(=\)  \( 2^{2} \cdot 3 \cdot 11 \cdot 353 \)
\( I_4 \)  \(=\) \(239073\) \(=\)  \( 3 \cdot 79691 \)
\( I_6 \)  \(=\) \(3674852529\) \(=\)  \( 3 \cdot 19 \cdot 751 \cdot 85847 \)
\( I_{10} \)  \(=\) \(119040\) \(=\)  \( 2^{8} \cdot 3 \cdot 5 \cdot 31 \)
\( J_2 \)  \(=\) \(34947\) \(=\)  \( 3^{2} \cdot 11 \cdot 353 \)
\( J_4 \)  \(=\) \(50797548\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 1411043 \)
\( J_6 \)  \(=\) \(98289730260\) \(=\)  \( 2^{2} \cdot 3^{4} \cdot 5 \cdot 31 \cdot 1249 \cdot 1567 \)
\( J_8 \)  \(=\) \(213635080145979\) \(=\)  \( 3^{4} \cdot 64399 \cdot 40955141 \)
\( J_{10} \)  \(=\) \(225990\) \(=\)  \( 2 \cdot 3^{6} \cdot 5 \cdot 31 \)
\( g_1 \)  \(=\) \(71502622649365111083/310\)
\( g_2 \)  \(=\) \(1487013548016809538/155\)
\( g_3 \)  \(=\) \(531176338621566\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{4}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
\(D_0 - D_\infty\) \(5x^2 - 5xz + 8z^2\) \(=\) \(0,\) \(5y\) \(=\) \(-5xz^2 + 3z^3\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
\(D_0 - D_\infty\) \(5x^2 - 5xz + 8z^2\) \(=\) \(0,\) \(5y\) \(=\) \(-5xz^2 + 3z^3\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - xz^2 + z^3\) \(0\) \(2\)
\(D_0 - D_\infty\) \(5x^2 - 5xz + 8z^2\) \(=\) \(0,\) \(5y\) \(=\) \(x^2z - 9xz^2 + 7z^3\) \(0\) \(4\)

2-torsion field: 8.0.191501314560000.152

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 3.621258 \)
Tamagawa product: \( 4 \)
Torsion order:\( 8 \)
Leading coefficient: \( 0.452657 \)
Analytic order of Ш: \( 2 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(3\) \(3\) \(6\) \(4\) \(1 + T\)
\(5\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 2 T + 5 T^{2} )\)
\(31\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 31 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.6 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 15.a
  Elliptic curve isogeny class 558.c

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);