Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
62208.a.124416.1 62208.a \( 2^{8} \cdot 3^{5} \) $1$ $\Z/6\Z$ \(\Q\) $[128,-1827,-133803,-2]$ $[768,68424,17384512,2167365360,-124416]$ $[-2147483648,-\frac{747372544}{3},-\frac{2225217536}{27}]$ $y^2 + x^3y = x^5 - x^4 - 2x^3 + 10x^2 - 4x - 6$
62208.b.124416.1 62208.b \( 2^{8} \cdot 3^{5} \) $0$ $\Z/4\Z$ \(\Q\) $[128,-1827,-133803,-2]$ $[768,68424,17384512,2167365360,-124416]$ $[-2147483648,-\frac{747372544}{3},-\frac{2225217536}{27}]$ $y^2 + y = 2x^6 - 4x^5 - 2x^4 + 2x^3 + 5x^2 + x - 1$
62208.c.124416.1 62208.c \( 2^{8} \cdot 3^{5} \) $1$ $\Z/2\Z$ \(\Q\) $[4032,8757,11342799,-486]$ $[8064,2686152,1185506368,586127696112,-124416]$ $[-274079378571264,-11321550471168,-\frac{1858873985024}{3}]$ $y^2 + x^3y = x^5 - 3x^4 - 10x^3 + 14x^2 + 24x - 30$
62208.d.186624.1 62208.d \( 2^{8} \cdot 3^{5} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[42,48,606,3]$ $[252,1494,1332,-474093,186624]$ $[5445468,\frac{256221}{2},\frac{1813}{4}]$ $y^2 = x^5 + x^4 - 3x^3 - 2x^2 + x$
62208.e.186624.1 62208.e \( 2^{8} \cdot 3^{5} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[462,2304,361170,729]$ $[924,29430,834772,-23698893,186624]$ $[\frac{10827136628}{3},\frac{248810485}{2},\frac{1237340797}{324}]$ $y^2 = x^5 - 6x^4 + 9x^3 + x^2 - 3x$
62208.f.186624.1 62208.f \( 2^{8} \cdot 3^{5} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[462,2304,361170,729]$ $[924,29430,834772,-23698893,186624]$ $[\frac{10827136628}{3},\frac{248810485}{2},\frac{1237340797}{324}]$ $y^2 = x^5 + 6x^4 + 9x^3 - x^2 - 3x$
62208.g.186624.1 62208.g \( 2^{8} \cdot 3^{5} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[42,48,606,3]$ $[252,1494,1332,-474093,186624]$ $[5445468,\frac{256221}{2},\frac{1813}{4}]$ $y^2 = x^5 - x^4 - 3x^3 + 2x^2 + x$
62208.h.186624.1 62208.h \( 2^{8} \cdot 3^{5} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[90,120,3642,3]$ $[540,9270,97236,-8356365,186624]$ $[246037500,\frac{15643125}{2},\frac{607725}{4}]$ $y^2 = x^5 - 2x^4 - 3x^3 + 3x^2 + 3x$
62208.i.248832.1 62208.i \( 2^{8} \cdot 3^{5} \) $0$ $\mathsf{trivial}$ \(\Q\) $[280,1170,92734,128]$ $[840,22380,784384,39504540,248832]$ $[1680700000,\frac{159923750}{3},\frac{60054400}{27}]$ $y^2 + xy = -x^6 + 11x^4 - 20x^3 + 11x^2 - 2x$
62208.j.373248.1 62208.j \( 2^{8} \cdot 3^{5} \) $1$ $\Z/2\Z$ \(\Q\) $[72,573,19875,6]$ $[432,-5976,-1979136,-222674832,373248]$ $[40310784,-1290816,-989568]$ $y^2 + y = 2x^6 - 10x^4 - 12x^3 + 6x + 2$
62208.k.373248.1 62208.k \( 2^{8} \cdot 3^{5} \) $0$ $\Z/6\Z$ \(\Q\) $[2,-486,-1296,-6]$ $[12,11670,209956,-33417357,-373248]$ $[-\frac{2}{3},-\frac{1945}{36},-\frac{52489}{648}]$ $y^2 + x^3y = -3x^4 - 3x^3 + 9x^2 + 18x + 8$
62208.l.373248.1 62208.l \( 2^{8} \cdot 3^{5} \) $2$ $\mathsf{trivial}$ \(\Q\) $[36,54,828,-192]$ $[108,162,-7236,-201933,-373248]$ $[-39366,-\frac{2187}{4},\frac{1809}{8}]$ $y^2 + (x + 1)y = x^6 + x^3 + 2x^2 + x$
62208.m.373248.1 62208.m \( 2^{8} \cdot 3^{5} \) $1$ $\Z/2\Z$ \(\Q\) $[30,78,504,-6]$ $[180,-522,10332,396819,-373248]$ $[-506250,\frac{32625}{4},-\frac{7175}{8}]$ $y^2 + y = 2x^5 + 3x^4 + x^3 + 2x^2$
62208.n.746496.1 62208.n \( 2^{8} \cdot 3^{5} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[142,1368,47940,-12]$ $[852,-2586,-2596,-2224797,-746496]$ $[-\frac{1804229351}{3},\frac{154259641}{72},\frac{3271609}{1296}]$ $y^2 = x^6 - 3x^3 + 2$
62208.o.995328.1 62208.o \( 2^{8} \cdot 3^{5} \) $1$ $\Z/2\Z$ \(\Q\) $[596,414,79842,512]$ $[1788,130722,12549308,1337480355,995328]$ $[\frac{73439775749}{4},\frac{72070284863}{96},\frac{69651796727}{1728}]$ $y^2 + (x + 1)y = -3x^6 - 6x^4 + x^3 - 4x^2 - 1$
62208.p.995328.1 62208.p \( 2^{8} \cdot 3^{5} \) $1$ $\Z/2\Z$ \(\Q\) $[604,810,160350,512]$ $[1812,131946,12369604,1250993883,995328]$ $[\frac{78502725751}{4},\frac{75713935441}{96},\frac{70509835201}{1728}]$ $y^2 + (x^3 + x)y = x^5 - 2x^4 - 8x^3 - x^2 + 9x - 3$
  displayed columns for results