Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x + 1)y = x^6 + x^3 + 2x^2 + x$ | (homogenize, simplify) |
| $y^2 + (xz^2 + z^3)y = x^6 + x^3z^3 + 2x^2z^4 + xz^5$ | (dehomogenize, simplify) |
| $y^2 = 4x^6 + 4x^3 + 9x^2 + 6x + 1$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(62208\) | \(=\) | \( 2^{8} \cdot 3^{5} \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(373248\) | \(=\) | \( 2^{9} \cdot 3^{6} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(36\) | \(=\) | \( 2^{2} \cdot 3^{2} \) |
| \( I_4 \) | \(=\) | \(54\) | \(=\) | \( 2 \cdot 3^{3} \) |
| \( I_6 \) | \(=\) | \(828\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 23 \) |
| \( I_{10} \) | \(=\) | \(-192\) | \(=\) | \( - 2^{6} \cdot 3 \) |
| \( J_2 \) | \(=\) | \(108\) | \(=\) | \( 2^{2} \cdot 3^{3} \) |
| \( J_4 \) | \(=\) | \(162\) | \(=\) | \( 2 \cdot 3^{4} \) |
| \( J_6 \) | \(=\) | \(-7236\) | \(=\) | \( - 2^{2} \cdot 3^{3} \cdot 67 \) |
| \( J_8 \) | \(=\) | \(-201933\) | \(=\) | \( - 3^{6} \cdot 277 \) |
| \( J_{10} \) | \(=\) | \(-373248\) | \(=\) | \( - 2^{9} \cdot 3^{6} \) |
| \( g_1 \) | \(=\) | \(-39366\) | ||
| \( g_2 \) | \(=\) | \(-2187/4\) | ||
| \( g_3 \) | \(=\) | \(1809/8\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) |
| \((-2 : 1 : 3)\) | \((-2 : -10 : 3)\) | \((-1 : -23 : 4)\) | \((-1 : -25 : 4)\) | ||
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) |
| \((-2 : 1 : 3)\) | \((-2 : -10 : 3)\) | \((-1 : -23 : 4)\) | \((-1 : -25 : 4)\) | ||
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : -2 : 0)\) | \((1 : 2 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((-1 : -2 : 1)\) | \((-1 : 2 : 1)\) |
| \((-1 : -2 : 4)\) | \((-1 : 2 : 4)\) | \((-2 : -11 : 3)\) | \((-2 : 11 : 3)\) | ||
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : -1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.420134\) | \(\infty\) |
| \((0 : 0 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3\) | \(0.041264\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : -1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.420134\) | \(\infty\) |
| \((0 : 0 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3\) | \(0.041264\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : -2 : 1) + (0 : -1 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - z^3\) | \(0.420134\) | \(\infty\) |
| \((0 : 1 : 1) - (1 : -2 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2x^3 + xz^2 + z^3\) | \(0.041264\) | \(\infty\) |
2-torsion field: 6.2.1492992.1
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(2\) |
| Mordell-Weil rank: | \(2\) |
| 2-Selmer rank: | \(2\) |
| Regulator: | \( 0.016985 \) |
| Real period: | \( 13.39983 \) |
| Tamagawa product: | \( 6 \) |
| Torsion order: | \( 1 \) |
| Leading coefficient: | \( 1.365653 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(8\) | \(9\) | \(2\) | \(1^*\) | \(1 + T + 2 T^{2}\) | no | |
| \(3\) | \(5\) | \(6\) | \(3\) | \(1^*\) | \(1\) | no |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.10.1 | no |
| \(3\) | 3.540.6 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).