Minimal equation
Minimal equation
Simplified equation
$y^2 = x^5 + x^4 - 3x^3 - 2x^2 + x$ | (homogenize, simplify) |
$y^2 = x^5z + x^4z^2 - 3x^3z^3 - 2x^2z^4 + xz^5$ | (dehomogenize, simplify) |
$y^2 = x^5 + x^4 - 3x^3 - 2x^2 + x$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(62208\) | \(=\) | \( 2^{8} \cdot 3^{5} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(186624\) | \(=\) | \( 2^{8} \cdot 3^{6} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(42\) | \(=\) | \( 2 \cdot 3 \cdot 7 \) |
\( I_4 \) | \(=\) | \(48\) | \(=\) | \( 2^{4} \cdot 3 \) |
\( I_6 \) | \(=\) | \(606\) | \(=\) | \( 2 \cdot 3 \cdot 101 \) |
\( I_{10} \) | \(=\) | \(3\) | \(=\) | \( 3 \) |
\( J_2 \) | \(=\) | \(252\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 7 \) |
\( J_4 \) | \(=\) | \(1494\) | \(=\) | \( 2 \cdot 3^{2} \cdot 83 \) |
\( J_6 \) | \(=\) | \(1332\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 37 \) |
\( J_8 \) | \(=\) | \(-474093\) | \(=\) | \( - 3^{5} \cdot 1951 \) |
\( J_{10} \) | \(=\) | \(186624\) | \(=\) | \( 2^{8} \cdot 3^{6} \) |
\( g_1 \) | \(=\) | \(5445468\) | ||
\( g_2 \) | \(=\) | \(256221/2\) | ||
\( g_3 \) | \(=\) | \(1813/4\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : 0 : 1)\)
Number of rational Weierstrass points: \(3\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((-1 : 0 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
2-torsion field: \(\Q(\zeta_{9})^+\)
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 12.83982 \) |
Tamagawa product: | \( 2 \) |
Torsion order: | \( 4 \) |
Leading coefficient: | \( 1.604977 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(8\) | \(8\) | \(1\) | \(-1^*\) | \(1\) | no | |
\(3\) | \(5\) | \(6\) | \(2\) | \(-1^*\) | \(1 + T\) | no |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.240.1 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).