Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^2 + x)y = 5x^5 + 12x^4 + 17x^3 + 12x^2 + 5x$ | (homogenize, simplify) |
$y^2 + (x^2z + xz^2)y = 5x^5z + 12x^4z^2 + 17x^3z^3 + 12x^2z^4 + 5xz^5$ | (dehomogenize, simplify) |
$y^2 = 20x^5 + 49x^4 + 70x^3 + 49x^2 + 20x$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(1950\) | \(=\) | \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(97500\) | \(=\) | \( 2^{2} \cdot 3 \cdot 5^{4} \cdot 13 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(3492\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 97 \) |
\( I_4 \) | \(=\) | \(996801\) | \(=\) | \( 3 \cdot 13 \cdot 61 \cdot 419 \) |
\( I_6 \) | \(=\) | \(1494257697\) | \(=\) | \( 3^{2} \cdot 43 \cdot 521 \cdot 7411 \) |
\( I_{10} \) | \(=\) | \(12480000\) | \(=\) | \( 2^{9} \cdot 3 \cdot 5^{4} \cdot 13 \) |
\( J_2 \) | \(=\) | \(873\) | \(=\) | \( 3^{2} \cdot 97 \) |
\( J_4 \) | \(=\) | \(-9778\) | \(=\) | \( - 2 \cdot 4889 \) |
\( J_6 \) | \(=\) | \(-9141600\) | \(=\) | \( - 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 293 \) |
\( J_8 \) | \(=\) | \(-2019056521\) | \(=\) | \( - 41 \cdot 49245281 \) |
\( J_{10} \) | \(=\) | \(97500\) | \(=\) | \( 2^{2} \cdot 3 \cdot 5^{4} \cdot 13 \) |
\( g_1 \) | \(=\) | \(169024618278531/32500\) | ||
\( g_2 \) | \(=\) | \(-1084280166171/16250\) | ||
\( g_3 \) | \(=\) | \(-1786430376/25\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ |
|
Rational points
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{4}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(5x^2 + 6xz + 5z^2\) | \(=\) | \(0,\) | \(10y\) | \(=\) | \(xz^2 + 5z^3\) | \(0\) | \(2\) |
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(5x^2 + 7xz + 5z^2\) | \(=\) | \(0,\) | \(5y\) | \(=\) | \(2xz^2 + 5z^3\) | \(0\) | \(4\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(5x^2 + 6xz + 5z^2\) | \(=\) | \(0,\) | \(10y\) | \(=\) | \(xz^2 + 5z^3\) | \(0\) | \(2\) |
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(5x^2 + 7xz + 5z^2\) | \(=\) | \(0,\) | \(5y\) | \(=\) | \(2xz^2 + 5z^3\) | \(0\) | \(4\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(5x^2 + 6xz + 5z^2\) | \(=\) | \(0,\) | \(10y\) | \(=\) | \(x^2z + 3xz^2 + 10z^3\) | \(0\) | \(2\) |
\(D_0 - 2 \cdot(1 : 0 : 0)\) | \(5x^2 + 7xz + 5z^2\) | \(=\) | \(0,\) | \(5y\) | \(=\) | \(x^2z + 5xz^2 + 10z^3\) | \(0\) | \(4\) |
2-torsion field: \(\Q(i, \sqrt{39})\)
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 4.383085 \) |
Tamagawa product: | \( 8 \) |
Torsion order: | \( 8 \) |
Leading coefficient: | \( 0.547885 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(2\) | \(2\) | \(-1^*\) | \(( 1 - T )( 1 + T + 2 T^{2} )\) | yes | |
\(3\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 3 T^{2} )\) | yes | |
\(5\) | \(2\) | \(4\) | \(4\) | \(1\) | \(( 1 - T )^{2}\) | yes | |
\(13\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 2 T + 13 T^{2} )\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.180.3 | yes |
\(3\) | 3.90.1 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 15.a
Elliptic curve isogeny class 130.b
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).