Minimal equation
Minimal equation
Simplified equation
$y^2 + (x + 1)y = -2x^5 + x^2$ | (homogenize, simplify) |
$y^2 + (xz^2 + z^3)y = -2x^5z + x^2z^4$ | (dehomogenize, simplify) |
$y^2 = -8x^5 + 5x^2 + 2x + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(1176\) | \(=\) | \( 2^{3} \cdot 3 \cdot 7^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(16464\) | \(=\) | \( 2^{4} \cdot 3 \cdot 7^{3} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(160\) | \(=\) | \( 2^{5} \cdot 5 \) |
\( I_4 \) | \(=\) | \(4720\) | \(=\) | \( 2^{4} \cdot 5 \cdot 59 \) |
\( I_6 \) | \(=\) | \(130020\) | \(=\) | \( 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 197 \) |
\( I_{10} \) | \(=\) | \(-65856\) | \(=\) | \( - 2^{6} \cdot 3 \cdot 7^{3} \) |
\( J_2 \) | \(=\) | \(80\) | \(=\) | \( 2^{4} \cdot 5 \) |
\( J_4 \) | \(=\) | \(-520\) | \(=\) | \( - 2^{3} \cdot 5 \cdot 13 \) |
\( J_6 \) | \(=\) | \(4220\) | \(=\) | \( 2^{2} \cdot 5 \cdot 211 \) |
\( J_8 \) | \(=\) | \(16800\) | \(=\) | \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \) |
\( J_{10} \) | \(=\) | \(-16464\) | \(=\) | \( - 2^{4} \cdot 3 \cdot 7^{3} \) |
\( g_1 \) | \(=\) | \(-204800000/1029\) | ||
\( g_2 \) | \(=\) | \(16640000/1029\) | ||
\( g_3 \) | \(=\) | \(-1688000/1029\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{6}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : -1 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
\((0 : 0 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0\) | \(6\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : -1 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(2\) |
\((0 : 0 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0\) | \(6\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : 0 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - z^3\) | \(0\) | \(2\) |
\((0 : 1 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 + z^3\) | \(0\) | \(6\) |
2-torsion field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 13.01930 \) |
Tamagawa product: | \( 4 \) |
Torsion order: | \( 12 \) |
Leading coefficient: | \( 0.361647 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(3\) | \(4\) | \(2\) | \(-1^*\) | \(1 + T\) | yes | |
\(3\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 2 T + 3 T^{2} )\) | yes | |
\(7\) | \(2\) | \(3\) | \(2\) | \(1\) | \(( 1 - T )^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.180.3 | yes |
\(3\) | 3.640.2 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 14.a
Elliptic curve isogeny class 84.b
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(3\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).