# Properties

 Label 84.2.a.b Level $84$ Weight $2$ Character orbit 84.a Self dual yes Analytic conductor $0.671$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [84,2,Mod(1,84)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(84, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("84.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$84 = 2^{2} \cdot 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 84.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.670743376979$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{3} + q^{7} + q^{9}+O(q^{10})$$ q + q^3 + q^7 + q^9 $$q + q^{3} + q^{7} + q^{9} - 6 q^{11} + 2 q^{13} - 4 q^{19} + q^{21} - 6 q^{23} - 5 q^{25} + q^{27} + 6 q^{29} + 8 q^{31} - 6 q^{33} + 2 q^{37} + 2 q^{39} + 12 q^{41} - 4 q^{43} + 12 q^{47} + q^{49} - 6 q^{53} - 4 q^{57} - 10 q^{61} + q^{63} + 8 q^{67} - 6 q^{69} + 6 q^{71} - 10 q^{73} - 5 q^{75} - 6 q^{77} - 4 q^{79} + q^{81} - 12 q^{83} + 6 q^{87} + 12 q^{89} + 2 q^{91} + 8 q^{93} - 10 q^{97} - 6 q^{99}+O(q^{100})$$ q + q^3 + q^7 + q^9 - 6 * q^11 + 2 * q^13 - 4 * q^19 + q^21 - 6 * q^23 - 5 * q^25 + q^27 + 6 * q^29 + 8 * q^31 - 6 * q^33 + 2 * q^37 + 2 * q^39 + 12 * q^41 - 4 * q^43 + 12 * q^47 + q^49 - 6 * q^53 - 4 * q^57 - 10 * q^61 + q^63 + 8 * q^67 - 6 * q^69 + 6 * q^71 - 10 * q^73 - 5 * q^75 - 6 * q^77 - 4 * q^79 + q^81 - 12 * q^83 + 6 * q^87 + 12 * q^89 + 2 * q^91 + 8 * q^93 - 10 * q^97 - 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 0 0 1.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.2.a.b 1
3.b odd 2 1 252.2.a.b 1
4.b odd 2 1 336.2.a.b 1
5.b even 2 1 2100.2.a.a 1
5.c odd 4 2 2100.2.k.a 2
7.b odd 2 1 588.2.a.c 1
7.c even 3 2 588.2.i.c 2
7.d odd 6 2 588.2.i.f 2
8.b even 2 1 1344.2.a.f 1
8.d odd 2 1 1344.2.a.o 1
9.c even 3 2 2268.2.j.i 2
9.d odd 6 2 2268.2.j.f 2
12.b even 2 1 1008.2.a.g 1
15.d odd 2 1 6300.2.a.p 1
15.e even 4 2 6300.2.k.r 2
16.e even 4 2 5376.2.c.i 2
16.f odd 4 2 5376.2.c.x 2
20.d odd 2 1 8400.2.a.ct 1
21.c even 2 1 1764.2.a.g 1
21.g even 6 2 1764.2.k.d 2
21.h odd 6 2 1764.2.k.e 2
24.f even 2 1 4032.2.a.t 1
24.h odd 2 1 4032.2.a.u 1
28.d even 2 1 2352.2.a.s 1
28.f even 6 2 2352.2.q.g 2
28.g odd 6 2 2352.2.q.s 2
56.e even 2 1 9408.2.a.r 1
56.h odd 2 1 9408.2.a.co 1
84.h odd 2 1 7056.2.a.x 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.a.b 1 1.a even 1 1 trivial
252.2.a.b 1 3.b odd 2 1
336.2.a.b 1 4.b odd 2 1
588.2.a.c 1 7.b odd 2 1
588.2.i.c 2 7.c even 3 2
588.2.i.f 2 7.d odd 6 2
1008.2.a.g 1 12.b even 2 1
1344.2.a.f 1 8.b even 2 1
1344.2.a.o 1 8.d odd 2 1
1764.2.a.g 1 21.c even 2 1
1764.2.k.d 2 21.g even 6 2
1764.2.k.e 2 21.h odd 6 2
2100.2.a.a 1 5.b even 2 1
2100.2.k.a 2 5.c odd 4 2
2268.2.j.f 2 9.d odd 6 2
2268.2.j.i 2 9.c even 3 2
2352.2.a.s 1 28.d even 2 1
2352.2.q.g 2 28.f even 6 2
2352.2.q.s 2 28.g odd 6 2
4032.2.a.t 1 24.f even 2 1
4032.2.a.u 1 24.h odd 2 1
5376.2.c.i 2 16.e even 4 2
5376.2.c.x 2 16.f odd 4 2
6300.2.a.p 1 15.d odd 2 1
6300.2.k.r 2 15.e even 4 2
7056.2.a.x 1 84.h odd 2 1
8400.2.a.ct 1 20.d odd 2 1
9408.2.a.r 1 56.e even 2 1
9408.2.a.co 1 56.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(84))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 1$$
$5$ $$T$$
$7$ $$T - 1$$
$11$ $$T + 6$$
$13$ $$T - 2$$
$17$ $$T$$
$19$ $$T + 4$$
$23$ $$T + 6$$
$29$ $$T - 6$$
$31$ $$T - 8$$
$37$ $$T - 2$$
$41$ $$T - 12$$
$43$ $$T + 4$$
$47$ $$T - 12$$
$53$ $$T + 6$$
$59$ $$T$$
$61$ $$T + 10$$
$67$ $$T - 8$$
$71$ $$T - 6$$
$73$ $$T + 10$$
$79$ $$T + 4$$
$83$ $$T + 12$$
$89$ $$T - 12$$
$97$ $$T + 10$$