Label |
Name |
Order |
Parity |
Solvable |
Nil. class |
Conj. classes |
Subfields |
Low Degree Siblings |
18T445 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$-1$ |
✓ |
$-1$ |
$36$ |
$S_3$, $S_4$ |
24T7319, 27T538, 36T4786, 36T4787, 36T4788, 36T4820, 36T4951, 36T4974 x 2 |
24T7319 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$1$ |
✓ |
$-1$ |
$36$ |
$C_2$, $S_4$, $S_4$ |
18T445, 27T538, 36T4786, 36T4787, 36T4788, 36T4820, 36T4951, 36T4974 x 2 |
27T538 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$1$ |
✓ |
$-1$ |
$36$ |
$S_3$ x 2, $S_3^2$, $S_3\wr S_3$ |
18T445, 24T7319, 36T4786, 36T4787, 36T4788, 36T4820, 36T4951, 36T4974 x 2 |
36T4786 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$1$ |
✓ |
$-1$ |
$36$ |
$C_2$, $S_3$, $S_3$, $S_4$, $S_4$, $S_4$, $C_3^3:(S_3\times S_4)$ |
18T445, 24T7319, 27T538, 36T4787, 36T4788, 36T4820, 36T4951, 36T4974 x 2 |
36T4787 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$1$ |
✓ |
$-1$ |
$36$ |
$C_2$, $S_3$, $D_{6}$, $S_4$, $S_4\times C_2$, $C_2 \times S_4$, $C_3^3:(S_3\times S_4)$ |
18T445, 24T7319, 27T538, 36T4786, 36T4788, 36T4820, 36T4951, 36T4974 x 2 |
36T4788 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$1$ |
✓ |
$-1$ |
$36$ |
$C_2$, $S_3$, $D_{6}$, $S_4$, $S_4\times C_2$, $C_2 \times S_4$, $C_3^3:(S_3\times S_4)$ |
18T445, 24T7319, 27T538, 36T4786, 36T4787, 36T4820, 36T4951, 36T4974 x 2 |
36T4820 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$-1$ |
✓ |
$-1$ |
$36$ |
$S_3$, $S_4$, $S_4$, $S_4$ |
18T445, 24T7319, 27T538, 36T4786, 36T4787, 36T4788, 36T4951, 36T4974 x 2 |
36T4951 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$-1$ |
✓ |
$-1$ |
$36$ |
$S_3$, $S_4$, $S_3\times S_4$, $S_3\wr S_3$ |
18T445, 24T7319, 27T538, 36T4786, 36T4787, 36T4788, 36T4820, 36T4974 x 2 |
36T4974 |
$C_3^3:(S_3\times S_4)$ |
$3888$ |
$-1$ |
✓ |
$-1$ |
$36$ |
$S_4$, $S_3\wr S_3$ |
18T445, 24T7319, 27T538, 36T4786, 36T4787, 36T4788, 36T4820, 36T4951, 36T4974 |
Results are complete for degrees $\leq 23$.