Label |
Name |
Order |
Parity |
Solvable |
Nil. class |
Conj. classes |
Subfields |
Low Degree Siblings |
16T450 |
$C_4^2.C_2^4$ |
$256$ |
$1$ |
✓ |
$3$ |
$58$ |
$C_2$ x 3, $C_2^2$, $D_{4}$ x 2, $D_4\times C_2$ |
16T450 x 11, 32T2237 x 6, 32T2238 x 12, 32T2239 x 12, 32T2240 x 6, 32T2241 x 6, 32T6741 x 12 |
32T2237 |
$C_4^2.C_2^4$ |
$256$ |
$1$ |
✓ |
$3$ |
$58$ |
$C_2$ x 7, $C_2^2$ x 7, $D_{4}$ x 4, $C_2^3$, $D_4\times C_2$ x 6, $C_2^2 \times D_4$, $C_4^2.C_2^4$ x 2 |
16T450 x 12, 32T2237 x 5, 32T2238 x 12, 32T2239 x 12, 32T2240 x 6, 32T2241 x 6, 32T6741 x 12 |
32T2238 |
$C_4^2.C_2^4$ |
$256$ |
$1$ |
✓ |
$3$ |
$58$ |
$C_2$ x 7, $C_2^2$ x 7, $D_{4}$ x 4, $C_2^3$, $D_4\times C_2$ x 6, $C_2^2 \times D_4$, $C_4^2.C_2^4$ x 2 |
16T450 x 12, 32T2237 x 6, 32T2238 x 11, 32T2239 x 12, 32T2240 x 6, 32T2241 x 6, 32T6741 x 12 |
32T2239 |
$C_4^2.C_2^4$ |
$256$ |
$1$ |
✓ |
$3$ |
$58$ |
$C_2$ x 7, $C_2^2$ x 7, $D_{4}$ x 4, $C_2^3$, $D_4\times C_2$ x 6, $C_2^2 \times D_4$, $C_4^2.C_2^4$ x 2 |
16T450 x 12, 32T2237 x 6, 32T2238 x 12, 32T2239 x 11, 32T2240 x 6, 32T2241 x 6, 32T6741 x 12 |
32T2240 |
$C_4^2.C_2^4$ |
$256$ |
$1$ |
✓ |
$3$ |
$58$ |
$C_2$ x 7, $C_2^2$ x 7, $D_{4}$ x 4, $C_2^3$, $D_4\times C_2$ x 6, $C_2^2 \times D_4$, $C_4^2.C_2^4$ x 2 |
16T450 x 12, 32T2237 x 6, 32T2238 x 12, 32T2239 x 12, 32T2240 x 5, 32T2241 x 6, 32T6741 x 12 |
32T2241 |
$C_4^2.C_2^4$ |
$256$ |
$1$ |
✓ |
$3$ |
$58$ |
$C_2$ x 7, $C_2^2$ x 7, $D_{4}$ x 4, $C_2^3$, $D_4$ x 2, $D_4\times C_2$ x 4, $D_4\times C_2$, $C_4^2.C_2^4$ x 2 |
16T450 x 12, 32T2237 x 6, 32T2238 x 12, 32T2239 x 12, 32T2240 x 6, 32T2241 x 5, 32T6741 x 12 |
32T6741 |
$C_4^2.C_2^4$ |
$256$ |
$1$ |
✓ |
$3$ |
$58$ |
$C_2$ x 3, $C_2^2$, $D_{4}$ x 6, $D_4\times C_2$ x 3, $C_2^2 \wr C_2$ x 4, $C_2^3:D_4$ |
16T450 x 12, 32T2237 x 6, 32T2238 x 12, 32T2239 x 12, 32T2240 x 6, 32T2241 x 6, 32T6741 x 11 |
Results are complete for degrees $\leq 23$.