Show commands:
Magma
magma: G := TransitiveGroup(9, 30);
Group action invariants
Degree $n$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ | ||
CHM label: | $1/2[S(3)^{3}]S(3)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,9), (4,5)(7,8), (1,4,7)(2,5,8)(3,6,9), (1,2)(3,6)(4,7)(5,8) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
12T177 x 2, 12T178, 18T217, 18T218, 18T221, 18T222, 24T1529 x 2, 24T1530, 27T211, 27T216, 36T1121, 36T1122, 36T1123, 36T1124, 36T1125, 36T1130, 36T1140, 36T1239 x 2, 36T1240Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{5}$ | $27$ | $2$ | $2$ | $(1,2)(6,8)$ |
2B | $2^{4},1$ | $54$ | $2$ | $4$ | $(1,8)(2,6)(4,5)(7,9)$ |
3A | $3,1^{6}$ | $6$ | $3$ | $2$ | $(3,4,5)$ |
3B | $3^{3}$ | $8$ | $3$ | $6$ | $(1,2,9)(3,4,5)(6,8,7)$ |
3C | $3^{2},1^{3}$ | $12$ | $3$ | $4$ | $(1,2,9)(3,5,4)$ |
3D | $3^{3}$ | $72$ | $3$ | $6$ | $(1,6,4)(2,8,5)(3,9,7)$ |
4A | $4,2,1^{3}$ | $54$ | $4$ | $4$ | $(1,6,2,8)(7,9)$ |
6A | $3,2^{2},1^{2}$ | $54$ | $6$ | $4$ | $(1,2)(3,5,4)(6,8)$ |
6B | $6,2,1$ | $108$ | $6$ | $6$ | $(1,5,2,4,9,3)(6,8)$ |
9A | $9$ | $72$ | $9$ | $8$ | $(1,6,4,9,7,3,2,8,5)$ |
9B | $9$ | $72$ | $9$ | $8$ | $(1,6,4,2,8,5,9,7,3)$ |
12A1 | $4,3,2$ | $54$ | $12$ | $6$ | $(1,6,2,8)(3,5,4)(7,9)$ |
12A5 | $4,3,2$ | $54$ | $12$ | $6$ | $(1,6,2,8)(3,4,5)(7,9)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $648=2^{3} \cdot 3^{4}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 648.703 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 6A | 6B | 9A | 9B | 12A1 | 12A5 | ||
Size | 1 | 27 | 54 | 6 | 8 | 12 | 72 | 54 | 54 | 108 | 72 | 72 | 54 | 54 | |
2 P | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 2A | 3A | 3C | 9A | 9B | 6A | 6A | |
3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 4A | 2A | 2B | 3B | 3B | 4A | 4A | |
Type | |||||||||||||||
648.703.1a | R | ||||||||||||||
648.703.1b | R | ||||||||||||||
648.703.2a | R | ||||||||||||||
648.703.3a | R | ||||||||||||||
648.703.3b | R | ||||||||||||||
648.703.6a | R | ||||||||||||||
648.703.6b | R | ||||||||||||||
648.703.6c1 | R | ||||||||||||||
648.703.6c2 | R | ||||||||||||||
648.703.8a | R | ||||||||||||||
648.703.8b | R | ||||||||||||||
648.703.8c | R | ||||||||||||||
648.703.12a | R | ||||||||||||||
648.703.12b | R |
magma: CharacterTable(G);