Show commands:
Magma
magma: G := TransitiveGroup(9, 28);
Group action invariants
Degree $n$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $28$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3 \wr C_3 $ | ||
CHM label: | $[S(3)^{3}]3=S(3)wr3$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,9), (1,2), (1,4,7)(2,5,8)(3,6,9) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $12$: $A_4$ $24$: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Low degree siblings
12T176, 18T197 x 2, 18T198 x 2, 18T202, 18T204, 18T206, 18T207, 24T1528, 24T1539, 27T210, 27T213, 36T1094 x 2, 36T1095, 36T1096 x 2, 36T1097, 36T1099, 36T1101, 36T1102, 36T1103, 36T1137, 36T1238Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2,1^{7}$ | $9$ | $2$ | $1$ | $(1,2)$ |
2B | $2^{3},1^{3}$ | $27$ | $2$ | $3$ | $(1,2)(4,5)(7,8)$ |
2C | $2^{2},1^{5}$ | $27$ | $2$ | $2$ | $(4,5)(7,8)$ |
3A | $3,1^{6}$ | $6$ | $3$ | $2$ | $(1,9,2)$ |
3B | $3^{3}$ | $8$ | $3$ | $6$ | $(1,9,2)(3,5,4)(6,8,7)$ |
3C | $3^{2},1^{3}$ | $12$ | $3$ | $4$ | $(1,9,2)(6,8,7)$ |
3D1 | $3^{3}$ | $36$ | $3$ | $6$ | $(1,7,4)(2,8,5)(3,9,6)$ |
3D-1 | $3^{3}$ | $36$ | $3$ | $6$ | $(1,4,7)(2,5,8)(3,6,9)$ |
6A | $3,2,1^{4}$ | $18$ | $6$ | $3$ | $(1,2)(3,5,4)$ |
6B | $3,2,1^{4}$ | $18$ | $6$ | $3$ | $(1,2)(6,8,7)$ |
6C | $3^{2},2,1$ | $36$ | $6$ | $5$ | $(1,2)(3,5,4)(6,8,7)$ |
6D | $3,2^{2},1^{2}$ | $54$ | $6$ | $4$ | $(1,9,2)(4,5)(7,8)$ |
6E1 | $6,3$ | $108$ | $6$ | $7$ | $(1,5,7,2,4,8)(3,6,9)$ |
6E-1 | $6,3$ | $108$ | $6$ | $7$ | $(1,8,4,2,7,5)(3,9,6)$ |
9A1 | $9$ | $72$ | $9$ | $8$ | $(1,3,6,9,5,8,2,4,7)$ |
9A-1 | $9$ | $72$ | $9$ | $8$ | $(1,6,5,2,7,3,9,8,4)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $648=2^{3} \cdot 3^{4}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 648.705 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D1 | 3D-1 | 6A | 6B | 6C | 6D | 6E1 | 6E-1 | 9A1 | 9A-1 | ||
Size | 1 | 9 | 27 | 27 | 6 | 8 | 12 | 36 | 36 | 18 | 18 | 36 | 54 | 108 | 108 | 72 | 72 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D-1 | 3D1 | 3A | 3A | 3C | 3A | 3D1 | 3D-1 | 9A-1 | 9A1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2C | 2B | 2B | 3B | 3B | |
Type | ||||||||||||||||||
648.705.1a | R | |||||||||||||||||
648.705.1b | R | |||||||||||||||||
648.705.1c1 | C | |||||||||||||||||
648.705.1c2 | C | |||||||||||||||||
648.705.1d1 | C | |||||||||||||||||
648.705.1d2 | C | |||||||||||||||||
648.705.3a | R | |||||||||||||||||
648.705.3b | R | |||||||||||||||||
648.705.6a | R | |||||||||||||||||
648.705.6b | R | |||||||||||||||||
648.705.6c | R | |||||||||||||||||
648.705.6d | R | |||||||||||||||||
648.705.8a | R | |||||||||||||||||
648.705.8b1 | C | |||||||||||||||||
648.705.8b2 | C | |||||||||||||||||
648.705.12a | R | |||||||||||||||||
648.705.12b | R |
magma: CharacterTable(G);