Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $28$ | |
| Group : | $S_3 \wr C_3 $ | |
| CHM label : | $[S(3)^{3}]3=S(3)wr3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9), (1,2), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Low degree siblings
12T176, 18T197 x 2, 18T198 x 2, 18T202, 18T204, 18T206, 18T207, 24T1528, 24T1539, 27T210, 27T213, 36T1094 x 2, 36T1095, 36T1096 x 2, 36T1097, 36T1099, 36T1101, 36T1102, 36T1103, 36T1137, 36T1238Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(1,2,9)$ |
| $ 3, 3, 1, 1, 1 $ | $12$ | $3$ | $(1,2,9)(3,4,5)$ |
| $ 3, 3, 3 $ | $8$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $(2,9)$ |
| $ 3, 2, 1, 1, 1, 1 $ | $18$ | $6$ | $(2,9)(3,4,5)$ |
| $ 3, 2, 1, 1, 1, 1 $ | $18$ | $6$ | $(2,9)(6,7,8)$ |
| $ 3, 3, 2, 1 $ | $36$ | $6$ | $(2,9)(3,4,5)(6,7,8)$ |
| $ 2, 2, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $(2,9)(4,5)$ |
| $ 3, 2, 2, 1, 1 $ | $54$ | $6$ | $(2,9)(4,5)(6,7,8)$ |
| $ 2, 2, 2, 1, 1, 1 $ | $27$ | $2$ | $(2,9)(4,5)(7,8)$ |
| $ 3, 3, 3 $ | $36$ | $3$ | $(1,4,7)(2,5,8)(3,6,9)$ |
| $ 9 $ | $72$ | $9$ | $(1,4,7,2,5,8,9,3,6)$ |
| $ 6, 3 $ | $108$ | $6$ | $(1,4,7)(2,5,8,9,3,6)$ |
| $ 3, 3, 3 $ | $36$ | $3$ | $(1,7,4)(2,8,5)(3,9,6)$ |
| $ 9 $ | $72$ | $9$ | $(1,7,4,2,8,5,9,6,3)$ |
| $ 6, 3 $ | $108$ | $6$ | $(1,7,4)(2,8,5,9,6,3)$ |
Group invariants
| Order: | $648=2^{3} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [648, 705] |
| Character table: |
2 3 2 1 . 3 2 2 1 3 2 3 1 . 1 1 . 1
3 4 3 3 4 2 2 2 2 1 1 1 2 2 1 2 2 1
1a 3a 3b 3c 2a 6a 6b 6c 2b 6d 2c 3d 9a 6e 3e 9b 6f
2P 1a 3a 3b 3c 1a 3a 3a 3b 1a 3a 1a 3e 9b 3e 3d 9a 3d
3P 1a 1a 1a 1a 2a 2a 2a 2a 2b 2b 2c 1a 3c 2c 1a 3c 2c
5P 1a 3a 3b 3c 2a 6a 6b 6c 2b 6d 2c 3e 9b 6f 3d 9a 6e
7P 1a 3a 3b 3c 2a 6a 6b 6c 2b 6d 2c 3d 9a 6e 3e 9b 6f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 1 -1
X.3 1 1 1 1 -1 -1 -1 -1 1 1 -1 A A -A /A /A -/A
X.4 1 1 1 1 -1 -1 -1 -1 1 1 -1 /A /A -/A A A -A
X.5 1 1 1 1 1 1 1 1 1 1 1 A A A /A /A /A
X.6 1 1 1 1 1 1 1 1 1 1 1 /A /A /A A A A
X.7 3 3 3 3 -1 -1 -1 -1 -1 -1 3 . . . . . .
X.8 3 3 3 3 1 1 1 1 -1 -1 -3 . . . . . .
X.9 6 3 . -3 4 1 1 -2 2 -1 . . . . . . .
X.10 6 3 . -3 -4 -1 -1 2 2 -1 . . . . . . .
X.11 6 3 . -3 . -3 3 . -2 1 . . . . . . .
X.12 6 3 . -3 . 3 -3 . -2 1 . . . . . . .
X.13 8 -4 2 -1 . . . . . . . 2 -1 . 2 -1 .
X.14 8 -4 2 -1 . . . . . . . B -A . /B -/A .
X.15 8 -4 2 -1 . . . . . . . /B -/A . B -A .
X.16 12 . -3 3 -4 2 2 -1 . . . . . . . . .
X.17 12 . -3 3 4 -2 -2 1 . . . . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
|