Group action invariants
| Degree $n$ : | $7$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $A_7$ | |
| CHM label : | $A7$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,4,5,6,7), (1,2,3) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
15T47 x 2, 21T33, 35T28, 42T294, 42T299Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1 $ | $105$ | $2$ | $(1,4)(2,6)$ |
| $ 3, 1, 1, 1, 1 $ | $70$ | $3$ | $(3,7,5)$ |
| $ 3, 2, 2 $ | $210$ | $6$ | $(1,4)(2,6)(3,5,7)$ |
| $ 4, 2, 1 $ | $630$ | $4$ | $(1,2,4,6)(3,7)$ |
| $ 3, 3, 1 $ | $280$ | $3$ | $(1,4,6)(3,7,5)$ |
| $ 7 $ | $360$ | $7$ | $(1,7,5,2,6,3,4)$ |
| $ 7 $ | $360$ | $7$ | $(1,4,3,6,2,5,7)$ |
| $ 5, 1, 1 $ | $504$ | $5$ | $(1,2,5,6,4)$ |
Group invariants
| Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 3 . 2 3 2 . . . 2
3 2 2 2 1 . . . . 1
5 1 . . . . . . 1 .
7 1 . . . . 1 1 . .
1a 3a 3b 2a 4a 7a 7b 5a 6a
2P 1a 3a 3b 1a 2a 7a 7b 5a 3b
3P 1a 1a 1a 2a 4a 7b 7a 5a 2a
5P 1a 3a 3b 2a 4a 7b 7a 1a 6a
7P 1a 3a 3b 2a 4a 1a 1a 5a 6a
X.1 1 1 1 1 1 1 1 1 1
X.2 6 . 3 2 . -1 -1 1 -1
X.3 10 1 1 -2 . A /A . 1
X.4 10 1 1 -2 . /A A . 1
X.5 14 -1 2 2 . . . -1 2
X.6 14 2 -1 2 . . . -1 -1
X.7 15 . 3 -1 -1 1 1 . -1
X.8 21 . -3 1 -1 . . 1 1
X.9 35 -1 -1 -1 1 . . . -1
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|