Show commands: Magma
Group invariants
Abstract group: | $A_7$ |
| |
Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $7$ |
| |
Transitive number $t$: | $6$ |
| |
CHM label: | $A7$ | ||
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(3,4,5,6,7)$, $(1,2,3)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
15T47 x 2, 21T33, 35T28, 42T294, 42T299Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{7}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{3}$ | $105$ | $2$ | $2$ | $(1,2)(3,6)$ |
3A | $3,1^{4}$ | $70$ | $3$ | $2$ | $(1,3,2)$ |
3B | $3^{2},1$ | $280$ | $3$ | $4$ | $(2,6,7)(3,5,4)$ |
4A | $4,2,1$ | $630$ | $4$ | $4$ | $(1,3,2,6)(4,7)$ |
5A | $5,1^{2}$ | $504$ | $5$ | $4$ | $(3,6,4,7,5)$ |
6A | $3,2^{2}$ | $210$ | $6$ | $4$ | $(1,2,3)(4,7)(5,6)$ |
7A1 | $7$ | $360$ | $7$ | $6$ | $(1,3,7,5,2,6,4)$ |
7A-1 | $7$ | $360$ | $7$ | $6$ | $(1,4,6,2,5,7,3)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 3A | 3B | 4A | 5A | 6A | 7A1 | 7A-1 | ||
Size | 1 | 105 | 70 | 280 | 630 | 504 | 210 | 360 | 360 | |
2 P | 1A | 1A | 3A | 3B | 2A | 5A | 3A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 1A | 4A | 5A | 2A | 7A-1 | 7A1 | |
5 P | 1A | 2A | 3A | 3B | 4A | 1A | 6A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 3B | 4A | 5A | 6A | 1A | 1A | |
Type | ||||||||||
2520.a.1a | R | |||||||||
2520.a.6a | R | |||||||||
2520.a.10a1 | C | |||||||||
2520.a.10a2 | C | |||||||||
2520.a.14a | R | |||||||||
2520.a.14b | R | |||||||||
2520.a.15a | R | |||||||||
2520.a.21a | R | |||||||||
2520.a.35a | R |
Regular extensions
$f_{ 1 } =$ |
$x^{7} - 2 x^{6} + \left(t + 9\right) x^{4} + t x^{3} + 2 x - 1$
|