Properties

Label 7T6
Degree $7$
Order $2520$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $A_7$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(7, 6);
 

Group action invariants

Degree $n$:  $7$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $6$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $A_7$
CHM label:   $A7$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (3,4,5,6,7), (1,2,3)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

15T47 x 2, 21T33, 35T28, 42T294, 42T299

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{7}$ $1$ $1$ $0$ $()$
2A $2^{2},1^{3}$ $105$ $2$ $2$ $(1,2)(3,4)$
3A $3,1^{4}$ $70$ $3$ $2$ $(1,2,3)$
3B $3^{2},1$ $280$ $3$ $4$ $(1,2,3)(4,5,6)$
4A $4,2,1$ $630$ $4$ $4$ $(1,2,3,4)(5,6)$
5A $5,1^{2}$ $504$ $5$ $4$ $(1,2,3,4,5)$
6A $3,2^{2}$ $210$ $6$ $4$ $(1,2,3)(4,5)(6,7)$
7A1 $7$ $360$ $7$ $6$ $(1,2,3,4,5,6,7)$
7A-1 $7$ $360$ $7$ $6$ $(1,3,4,5,6,7,2)$

Malle's constant $a(G)$:     $1/2$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  2520.a
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 3B 4A 5A 6A 7A1 7A-1
Size 1 105 70 280 630 504 210 360 360
2 P 1A 1A 3A 3B 2A 5A 3A 7A1 7A-1
3 P 1A 2A 1A 1A 4A 5A 2A 7A-1 7A1
5 P 1A 2A 3A 3B 4A 1A 6A 7A-1 7A1
7 P 1A 2A 3A 3B 4A 5A 6A 1A 1A
Type

magma: CharacterTable(G);