Properties

Label 7T5
Degree $7$
Order $168$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $\GL(3,2)$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(7, 5);
 

Group action invariants

Degree $n$:  $7$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $\GL(3,2)$
CHM label:   $L(7) = L(3,2)$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2)(3,6), (1,2,3,4,5,6,7)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

7T5, 8T37, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{7}$ $1$ $1$ $0$ $()$
2A $2^{2},1^{3}$ $21$ $2$ $2$ $(2,7)(3,4)$
3A $3^{2},1$ $56$ $3$ $4$ $(1,7,6)(2,5,3)$
4A $4,2,1$ $42$ $4$ $4$ $(1,5)(2,4,7,3)$
7A1 $7$ $24$ $7$ $6$ $(1,6,7,5,2,4,3)$
7A-1 $7$ $24$ $7$ $6$ $(1,4,5,6,3,2,7)$

Malle's constant $a(G)$:     $1/2$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $168=2^{3} \cdot 3 \cdot 7$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  168.42
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 4A 7A1 7A-1
Size 1 21 56 42 24 24
2 P 1A 1A 3A 2A 7A1 7A-1
3 P 1A 2A 1A 4A 7A-1 7A1
7 P 1A 2A 3A 4A 1A 1A
Type
168.42.1a R 1 1 1 1 1 1
168.42.3a1 C 3 1 0 1 ζ731ζ7ζ72 ζ73+ζ7+ζ72
168.42.3a2 C 3 1 0 1 ζ73+ζ7+ζ72 ζ731ζ7ζ72
168.42.6a R 6 2 0 0 1 1
168.42.7a R 7 1 1 1 0 0
168.42.8a R 8 0 1 0 1 1

magma: CharacterTable(G);
 

Additional information

This is the lowest degree transitive permutation group which admits a Gassmann triple. As a result, number fields with this Galois group come in arithmetically equivalent pairs.