Show commands:
Magma
magma: G := TransitiveGroup(7, 5);
Group action invariants
Degree $n$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\GL(3,2)$ | ||
CHM label: | $L(7) = L(3,2)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2)(3,6), (1,2,3,4,5,6,7) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
7T5, 8T37, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{7}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{3}$ | $21$ | $2$ | $2$ | $(2,7)(3,4)$ |
3A | $3^{2},1$ | $56$ | $3$ | $4$ | $(1,7,6)(2,5,3)$ |
4A | $4,2,1$ | $42$ | $4$ | $4$ | $(1,5)(2,4,7,3)$ |
7A1 | $7$ | $24$ | $7$ | $6$ | $(1,6,7,5,2,4,3)$ |
7A-1 | $7$ | $24$ | $7$ | $6$ | $(1,4,5,6,3,2,7)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $168=2^{3} \cdot 3 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 168.42 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 4A | 7A1 | 7A-1 | ||
Size | 1 | 21 | 56 | 42 | 24 | 24 | |
2 P | 1A | 1A | 3A | 2A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 4A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 4A | 1A | 1A | |
Type | |||||||
168.42.1a | R | ||||||
168.42.3a1 | C | ||||||
168.42.3a2 | C | ||||||
168.42.6a | R | ||||||
168.42.7a | R | ||||||
168.42.8a | R |
magma: CharacterTable(G);
Additional information
This is the lowest degree transitive permutation group which admits a Gassmann triple. As a result, number fields with this Galois group come in arithmetically equivalent pairs.