Properties

Label 7T3
Degree $7$
Order $21$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $C_7:C_3$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(7, 3);
 

Group action invariants

Degree $n$:  $7$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $3$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_7:C_3$
CHM label:   $F_{21}(7) = 7:3$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,4)(3,6,5), (1,2,3,4,5,6,7)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$3$:  $C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

21T2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{7}$ $1$ $1$ $0$ $()$
3A1 $3^{2},1$ $7$ $3$ $4$ $(2,3,5)(4,7,6)$
3A-1 $3^{2},1$ $7$ $3$ $4$ $(2,5,3)(4,6,7)$
7A1 $7$ $3$ $7$ $6$ $(1,2,3,4,5,6,7)$
7A-1 $7$ $3$ $7$ $6$ $(1,4,7,3,6,2,5)$

Malle's constant $a(G)$:     $1/4$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $21=3 \cdot 7$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  21.1
magma: IdentifyGroup(G);
 
Character table:

1A 3A1 3A-1 7A1 7A-1
Size 1 7 7 3 3
3 P 1A 3A-1 3A1 7A1 7A-1
7 P 1A 1A 1A 7A-1 7A1
Type
21.1.1a R 1 1 1 1 1
21.1.1b1 C 1 ζ31 ζ3 1 1
21.1.1b2 C 1 ζ3 ζ31 1 1
21.1.3a1 C 3 0 0 ζ731ζ7ζ72 ζ73+ζ7+ζ72
21.1.3a2 C 3 0 0 ζ73+ζ7+ζ72 ζ731ζ7ζ72

magma: CharacterTable(G);