Show commands:
Magma
magma: G := TransitiveGroup(7, 3);
Group action invariants
Degree $n$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $3$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_7:C_3$ | ||
CHM label: | $F_{21}(7) = 7:3$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,4)(3,6,5), (1,2,3,4,5,6,7) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
21T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{7}$ | $1$ | $1$ | $0$ | $()$ |
3A1 | $3^{2},1$ | $7$ | $3$ | $4$ | $(2,3,5)(4,7,6)$ |
3A-1 | $3^{2},1$ | $7$ | $3$ | $4$ | $(2,5,3)(4,6,7)$ |
7A1 | $7$ | $3$ | $7$ | $6$ | $(1,2,3,4,5,6,7)$ |
7A-1 | $7$ | $3$ | $7$ | $6$ | $(1,4,7,3,6,2,5)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $21=3 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 21.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 3A1 | 3A-1 | 7A1 | 7A-1 | ||
Size | 1 | 7 | 7 | 3 | 3 | |
3 P | 1A | 3A-1 | 3A1 | 7A1 | 7A-1 | |
7 P | 1A | 1A | 1A | 7A-1 | 7A1 | |
Type | ||||||
21.1.1a | R | |||||
21.1.1b1 | C | |||||
21.1.1b2 | C | |||||
21.1.3a1 | C | |||||
21.1.3a2 | C |
magma: CharacterTable(G);