Group action invariants
| Degree $n$ : | $7$ | |
| Transitive number $t$ : | $3$ | |
| Group : | $C_7:C_3$ | |
| CHM label : | $F_{21}(7) = 7:3$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,4)(3,6,5), (1,2,3,4,5,6,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
21T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1 $ | $7$ | $3$ | $(2,3,5)(4,7,6)$ |
| $ 3, 3, 1 $ | $7$ | $3$ | $(2,5,3)(4,6,7)$ |
| $ 7 $ | $3$ | $7$ | $(1,2,3,4,5,6,7)$ |
| $ 7 $ | $3$ | $7$ | $(1,4,7,3,6,2,5)$ |
Group invariants
| Order: | $21=3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [21, 1] |
| Character table: |
3 1 1 1 . .
7 1 . . 1 1
1a 3a 3b 7a 7b
2P 1a 3b 3a 7a 7b
3P 1a 1a 1a 7b 7a
5P 1a 3b 3a 7b 7a
7P 1a 3a 3b 1a 1a
X.1 1 1 1 1 1
X.2 1 A /A 1 1
X.3 1 /A A 1 1
X.4 3 . . B /B
X.5 3 . . /B B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(7)+E(7)^2+E(7)^4
= (-1+Sqrt(-7))/2 = b7
|