Show commands: Magma
Group invariants
| Abstract group: | $C_7:C_3$ |
| |
| Order: | $21=3 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $7$ |
| |
| Transitive number $t$: | $3$ |
| |
| CHM label: | $F_{21}(7) = 7:3$ | ||
| Parity: | $1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,2,4)(3,6,5)$, $(1,2,3,4,5,6,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
21T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{7}$ | $1$ | $1$ | $0$ | $()$ |
| 3A1 | $3^{2},1$ | $7$ | $3$ | $4$ | $(1,4,3)(2,6,7)$ |
| 3A-1 | $3^{2},1$ | $7$ | $3$ | $4$ | $(1,3,4)(2,7,6)$ |
| 7A1 | $7$ | $3$ | $7$ | $6$ | $(1,2,3,4,5,6,7)$ |
| 7A-1 | $7$ | $3$ | $7$ | $6$ | $(1,4,7,3,6,2,5)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 3A1 | 3A-1 | 7A1 | 7A-1 | ||
| Size | 1 | 7 | 7 | 3 | 3 | |
| 3 P | 1A | 3A-1 | 3A1 | 7A1 | 7A-1 | |
| 7 P | 1A | 1A | 1A | 7A-1 | 7A1 | |
| Type | ||||||
| 21.1.1a | R | |||||
| 21.1.1b1 | C | |||||
| 21.1.1b2 | C | |||||
| 21.1.3a1 | C | |||||
| 21.1.3a2 | C |
Regular extensions
| $f_{ 1 } =$ |
$64 x^{7}-112 \left(s^{2}+7 t^{2}\right) x^{5}+56 \left(s^{2}+7 t^{2}\right)^{2} x^{3}-7 \left(s^{2}+7 t^{2}\right)^{3} x-s \left(s^{2}+7 t^{2}\right)^{3}$
|
| $f_{ 2 } =$ |
$27 x^{7} + \left(81 t^{2} + 3699\right) x^{6} + \left(-1377 t^{4} - 5670 t^{2} - 23328 t + 132759\right) x^{5} + \left(-5811 t^{6} - 153387 t^{4} - 113184 t^{3} - 966897 t^{2} - 1531872 t + 47007\right) x^{4} + \left(-1887 t^{8} - 195636 t^{6} - 46656 t^{5} - 3937194 t^{4} - 3450816 t^{3} - 25169940 t^{2} - 33203520 t - 48370959\right) x^{3} + \left(11715 t^{10} + 338733 t^{8} + 388800 t^{7} + 2731662 t^{6} + 7216128 t^{5} + 3300426 t^{4} + 22353408 t^{3} - 35833185 t^{2} - 82067904 t - 179039079\right) x^{2} + \left(8933 t^{12} + 412602 t^{10} + 360288 t^{9} + 7773795 t^{8} + 11772864 t^{7} + 82148172 t^{6} + 141787584 t^{5} + 538518267 t^{4} + 792220608 t^{3} + 2068073370 t^{2} + 1846590048 t + 3798843165\right) x + \left(-289 t^{14} - 22805 t^{12} + 14688 t^{11} - 710733 t^{10} + 315360 t^{9} - 11528625 t^{8} + 51840 t^{7} - 113796915 t^{6} - 39097728 t^{5} - 737041167 t^{4} - 321308640 t^{3} - 2901892959 t^{2} - 869800032 t - 5291543403\right)$
|