Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $A_4\times C_2$ | |
| CHM label : | $2A_{4}(6) = [2^{3}]3 = 2 wr 3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5)(2,4,6), (3,6) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Low degree siblings
8T13, 12T6, 12T7, 24T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1 $ | $3$ | $2$ | $(3,6)$ |
| $ 2, 2, 1, 1 $ | $3$ | $2$ | $(2,5)(3,6)$ |
| $ 3, 3 $ | $4$ | $3$ | $(1,2,3)(4,5,6)$ |
| $ 6 $ | $4$ | $6$ | $(1,2,3,4,5,6)$ |
| $ 3, 3 $ | $4$ | $3$ | $(1,3,2)(4,6,5)$ |
| $ 6 $ | $4$ | $6$ | $(1,3,5,4,6,2)$ |
| $ 2, 2, 2 $ | $1$ | $2$ | $(1,4)(2,5)(3,6)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 13] |
| Character table: |
2 3 3 3 1 1 1 1 3
3 1 . . 1 1 1 1 1
1a 2a 2b 3a 6a 3b 6b 2c
2P 1a 1a 1a 3b 3b 3a 3a 1a
3P 1a 2a 2b 1a 2c 1a 2c 2c
5P 1a 2a 2b 3b 6b 3a 6a 2c
X.1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 -1 -1
X.3 1 -1 1 A -A /A -/A -1
X.4 1 -1 1 /A -/A A -A -1
X.5 1 1 1 A A /A /A 1
X.6 1 1 1 /A /A A A 1
X.7 3 1 -1 . . . . -3
X.8 3 -1 -1 . . . . 3
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|