Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $13$ | |
| Group : | $C_3^2:D_4$ | |
| CHM label : | $F_{36}(6):2 = [S(3)^{2}]2 = S(3) wr 2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4), (1,4)(2,5)(3,6), (2,4,6) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Low degree siblings
6T13, 9T16, 12T34 x 2, 12T35 x 2, 12T36 x 2, 18T34 x 2, 18T36, 24T72 x 2, 36T53, 36T54 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1 $ | $6$ | $2$ | $(4,6)$ |
| $ 2, 2, 1, 1 $ | $9$ | $2$ | $(3,5)(4,6)$ |
| $ 3, 1, 1, 1 $ | $4$ | $3$ | $(2,4,6)$ |
| $ 3, 2, 1 $ | $12$ | $6$ | $(2,4,6)(3,5)$ |
| $ 2, 2, 2 $ | $6$ | $2$ | $(1,2)(3,4)(5,6)$ |
| $ 4, 2 $ | $18$ | $4$ | $(1,2)(3,4,5,6)$ |
| $ 6 $ | $12$ | $6$ | $(1,2,3,4,5,6)$ |
| $ 3, 3 $ | $4$ | $3$ | $(1,3,5)(2,4,6)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 40] |
| Character table: |
2 3 2 3 1 1 2 2 1 1
3 2 1 . 2 1 1 . 1 2
1a 2a 2b 3a 6a 2c 4a 6b 3b
2P 1a 1a 1a 3a 3a 1a 2b 3b 3b
3P 1a 2a 2b 1a 2a 2c 4a 2c 1a
5P 1a 2a 2b 3a 6a 2c 4a 6b 3b
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 -1 1
X.3 1 -1 1 1 -1 1 -1 1 1
X.4 1 1 1 1 1 -1 -1 -1 1
X.5 2 . -2 2 . . . . 2
X.6 4 -2 . 1 1 . . . -2
X.7 4 . . -2 . -2 . 1 1
X.8 4 . . -2 . 2 . -1 1
X.9 4 2 . 1 -1 . . . -2
|