Group action invariants
Degree $n$: | $46$ | |
Transitive number $t$: | $10$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $1$ | |
Generators: | (1,5,9,13,17,21,2,6,10,14,18,22,3,7,11,15,19,23,4,8,12,16,20)(24,28)(25,27)(29,46)(30,45)(31,44)(32,43)(33,42)(34,41)(35,40)(36,39)(37,38), (1,33,2,24)(3,38,23,42)(4,29,22,28)(5,43,21,37)(6,34,20,46)(7,25,19,32)(8,39,18,41)(9,30,17,27)(10,44,16,36)(11,35,15,45)(12,26,14,31)(13,40) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 23: None
Low degree siblings
46T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
There are 104 conjugacy classes of elements. Data not shown.
Group invariants
Order: | $4232=2^{3} \cdot 23^{2}$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | not available |
Character table: not available. |