Show commands: Magma
Group invariants
| Abstract group: | $D_{23}\wr C_2$ |
| |
| Order: | $4232=2^{3} \cdot 23^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $46$ |
| |
| Transitive number $t$: | $10$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,5,9,13,17,21,2,6,10,14,18,22,3,7,11,15,19,23,4,8,12,16,20)(24,28)(25,27)(29,46)(30,45)(31,44)(32,43)(33,42)(34,41)(35,40)(36,39)(37,38)$, $(1,33,2,24)(3,38,23,42)(4,29,22,28)(5,43,21,37)(6,34,20,46)(7,25,19,32)(8,39,18,41)(9,30,17,27)(10,44,16,36)(11,35,15,45)(12,26,14,31)(13,40)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 23: None
Low degree siblings
46T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
104 x 104 character table
Regular extensions
Data not computed