Show commands: Magma
Group invariants
| Abstract group: | $C_{15}^3.S_4$ |
| |
| Order: | $81000=2^{3} \cdot 3^{4} \cdot 5^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $45$ |
| |
| Transitive number $t$: | $966$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,27,41,20,9,13,38,36,33,10,18,4,29,44,24,3,25,42,19,8,14,37,35,32,11,17,6,30,45,23,2,26,40,21,7,15,39,34,31,12,16,5,28,43,22)$, $(1,2)(4,26,40,36)(5,25,41,35)(6,27,42,34)(7,23,9,24)(8,22)(10,37)(11,38)(12,39)(13,17,31,44)(14,16,32,43)(15,18,33,45)(19,29)(20,30)(21,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ $648$: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ $3000$: 15T51 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Degree 9: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Degree 15: 15T51
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed