Show commands: Magma
Group invariants
| Abstract group: | $S_5\times C_3^2:\GL(2,3)$ |
| |
| Order: | $51840=2^{7} \cdot 3^{4} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $45$ |
| |
| Transitive number $t$: | $837$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,16,45)(2,20,44,3,18,43)(4,17,42)(5,19,41)(6,34,39)(7,35,36,10,33,38)(8,32,40)(9,31,37)(11,29,22)(12,27,25)(13,28,23)(14,30,21,15,26,24)$, $(1,22,35,26,42,39,15,18)(2,25,31,30,44,37,13,20)(3,21,32,27,43,36,11,17)(4,23,34,29,41,40,12,16)(5,24,33,28,45,38,14,19)(6,8,10,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ $48$: $S_4\times C_2$, $\textrm{GL(2,3)}$ x 2 $96$: 16T188 $120$: $S_5$ $240$: $S_5\times C_2$ $432$: $((C_3^2:Q_8):C_3):C_2$ $720$: $S_5 \times S_3$ $864$: 18T229 $2880$: 20T264 $5760$: 40T5154 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $S_5$
Degree 9: $((C_3^2:Q_8):C_3):C_2$
Degree 15: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
77 x 77 character table
Regular extensions
Data not computed