Show commands: Magma
Group invariants
| Abstract group: | $C_5^3:(S_3\times S_4)$ |
| |
| Order: | $18000=2^{4} \cdot 3^{2} \cdot 5^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $45$ |
| |
| Transitive number $t$: | $611$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,17,42,39,8,6)(2,18,41,37,9,5)(3,16,40,38,7,4)(10,26,33,29,44,14)(11,27,32,30,45,15)(12,25,31,28,43,13)(19,35,22,20,36,24)(21,34,23)$, $(1,16,37,7)(2,17,39,9)(3,18,38,8)(4,32)(5,31)(6,33)(10,27,30,44)(11,25,29,43)(12,26,28,45)(13,22)(14,23)(15,24)(19,34)(20,35)(21,36)(40,42)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $12$: $D_{6}$ x 2 $24$: $S_4$ $36$: $S_3^2$ $48$: $S_4\times C_2$ $144$: 12T83 $6000$: 15T60 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$ x 2
Degree 5: None
Degree 9: $S_3^2$
Degree 15: 15T60
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
66 x 66 character table
Regular extensions
Data not computed