Show commands: Magma
Group invariants
Abstract group: | $C_5^7.C_{15}^2:S_3$ |
| |
Order: | $105468750=2 \cdot 3^{3} \cdot 5^{9}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $45$ |
| |
Transitive number $t$: | $3793$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $5$ |
| |
Generators: | $(1,34,6,27,41,38,5,33,10,26,45,37,4,32,9,30,44,36,3,31,8,29,43,40,2,35,7,28,42,39)(11,17,12,18,13,19,14,20,15,16)(21,23,25,22,24)$, $(1,33,23,5,32,22,4,31,21,3,35,25,2,34,24)(6,36,12,8,38,14,10,40,11,7,37,13,9,39,15)(16,45,29,18,42,26,20,44,28,17,41,30,19,43,27)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $5$: $C_5$ $6$: $S_3$, $C_6$ $10$: $C_{10}$ $15$: $C_{15}$ $18$: $S_3\times C_3$ $30$: $S_3 \times C_5$, $C_{30}$ $54$: $C_3^2 : C_6$ $90$: 30T15 $150$: $(C_5^2 : C_3):C_2$ $270$: 45T30 $450$: 45T70 $750$: 15T32 $1350$: 45T174 $2250$: 45T244 $6750$: 45T423 $843750$: 45T1727 $4218750$: 45T2265 $21093750$: 45T2918 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: None
Degree 9: $C_3^2 : C_6$
Degree 15: None
Low degree siblings
45T3793 x 15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed