Show commands: Magma
Group invariants
| Abstract group: | $\He_3:S_5$ |
| |
| Order: | $3240=2^{3} \cdot 3^{4} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $45$ |
| |
| Transitive number $t$: | $297$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,18)(2,17)(3,16)(4,22)(5,24)(6,23)(7,21)(8,19)(9,20)(10,26)(11,27)(12,25)(13,14)(28,45)(29,43)(30,44)(32,33)(34,38)(35,37)(36,39)(41,42)$, $(1,30,10,19)(2,28,12,21)(3,29,11,20)(4,17,15,25,6,16,14,27,5,18,13,26)(7,23,9,24,8,22)(31,45,40,34,33,44,41,35,32,43,42,36)(38,39)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $54$: $C_3^2 : C_6$ $120$: $S_5$ $360$: $\GL(2,4):C_2$, $S_5 \times C_3$ $1080$: 30T221 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: $S_5$
Degree 9: None
Degree 15: $\GL(2,4):C_2$
Low degree siblings
45T296, 45T297, 45T307, 45T308 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{45}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18},1^{9}$ | $15$ | $2$ | $18$ | $( 1,19)( 2,20)( 3,21)( 4,31)( 5,32)( 6,33)( 7,43)( 8,45)( 9,44)(13,23)(14,24)(15,22)(16,36)(17,35)(18,34)(28,38)(29,39)(30,37)$ |
| 2B | $2^{21},1^{3}$ | $90$ | $2$ | $21$ | $( 1,18)( 2,17)( 3,16)( 4,15)( 5,14)( 6,13)( 7,39)( 8,38)( 9,37)(10,25)(11,26)(12,27)(19,45)(20,44)(21,43)(23,24)(28,34)(29,36)(30,35)(32,33)(40,42)$ |
| 3A | $3^{15}$ | $2$ | $3$ | $30$ | $( 1, 3, 2)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,23,24)(25,27,26)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,42,41)(43,45,44)$ |
| 3B1 | $3^{10},1^{15}$ | $3$ | $3$ | $20$ | $( 4, 5, 6)( 7, 9, 8)(13,14,15)(16,17,18)(22,23,24)(25,26,27)(31,32,33)(34,36,35)(40,42,41)(43,44,45)$ |
| 3B-1 | $3^{10},1^{15}$ | $3$ | $3$ | $20$ | $( 4, 6, 5)( 7, 8, 9)(13,15,14)(16,18,17)(22,24,23)(25,27,26)(31,33,32)(34,35,36)(40,41,42)(43,45,44)$ |
| 3C | $3^{15}$ | $6$ | $3$ | $30$ | $( 1,31,18)( 2,33,16)( 3,32,17)( 4,34,19)( 5,35,21)( 6,36,20)( 7,37,24)( 8,38,22)( 9,39,23)(10,41,25)(11,40,27)(12,42,26)(13,44,29)(14,43,30)(15,45,28)$ |
| 3D1 | $3^{15}$ | $6$ | $3$ | $30$ | $( 1,17,31)( 2,18,33)( 3,16,32)( 4,19,35)( 5,21,36)( 6,20,34)( 7,23,39)( 8,24,37)( 9,22,38)(10,27,41)(11,26,40)(12,25,42)(13,29,43)(14,30,45)(15,28,44)$ |
| 3D-1 | $3^{15}$ | $6$ | $3$ | $30$ | $( 1,31,17)( 2,33,18)( 3,32,16)( 4,35,19)( 5,36,21)( 6,34,20)( 7,39,23)( 8,37,24)( 9,38,22)(10,41,27)(11,40,26)(12,42,25)(13,43,29)(14,45,30)(15,44,28)$ |
| 3E | $3^{15}$ | $20$ | $3$ | $30$ | $( 1,10,38)( 2,12,37)( 3,11,39)( 4, 6, 5)( 7,16,26)( 8,18,25)( 9,17,27)(13,14,15)(19,20,21)(22,31,41)(23,32,40)(24,33,42)(28,29,30)(34,36,35)(43,45,44)$ |
| 3F | $3^{12},1^{9}$ | $40$ | $3$ | $24$ | $( 1,21,37)( 2,19,39)( 3,20,38)( 4,23,33)( 5,24,31)( 6,22,32)( 7,18,35)( 8,17,36)( 9,16,34)(13,14,15)(28,29,30)(43,45,44)$ |
| 3G1 | $3^{13},1^{6}$ | $60$ | $3$ | $26$ | $( 1,37,29)( 2,39,28)( 3,38,30)( 7,45,17)( 8,44,16)( 9,43,18)(10,11,12)(13,32,23)(14,33,24)(15,31,22)(19,20,21)(34,35,36)(40,41,42)$ |
| 3G-1 | $3^{13},1^{6}$ | $60$ | $3$ | $26$ | $( 1,29,37)( 2,28,39)( 3,30,38)( 7,17,45)( 8,16,44)( 9,18,43)(10,12,11)(13,23,32)(14,24,33)(15,22,31)(19,21,20)(34,36,35)(40,42,41)$ |
| 3H | $3^{15}$ | $120$ | $3$ | $30$ | $( 1,25, 6)( 2,26, 5)( 3,27, 4)( 7,23,38)( 8,24,39)( 9,22,37)(10,36,31)(11,34,32)(12,35,33)(13,29,44)(14,30,43)(15,28,45)(16,42,21)(17,40,19)(18,41,20)$ |
| 3I1 | $3^{15}$ | $120$ | $3$ | $30$ | $( 1, 6,45)( 2, 5,43)( 3, 4,44)( 7,37,23)( 8,38,24)( 9,39,22)(10,41,26)(11,40,25)(12,42,27)(13,16,20)(14,18,19)(15,17,21)(28,33,34)(29,31,35)(30,32,36)$ |
| 3I-1 | $3^{15}$ | $120$ | $3$ | $30$ | $( 1,45, 6)( 2,43, 5)( 3,44, 4)( 7,23,37)( 8,24,38)( 9,22,39)(10,26,41)(11,25,40)(12,27,42)(13,20,16)(14,19,18)(15,21,17)(28,34,33)(29,35,31)(30,36,32)$ |
| 4A | $4^{9},2^{4},1$ | $270$ | $4$ | $31$ | $( 2, 3)( 4, 7,42,44)( 5, 9,41,45)( 6, 8,40,43)(10,28,21,39)(11,30,20,38)(12,29,19,37)(13,34,24,26)(14,36,22,27)(15,35,23,25)(16,32)(17,33)(18,31)$ |
| 5A | $5^{9}$ | $24$ | $5$ | $36$ | $( 1,29,21,38,12)( 2,28,19,37,11)( 3,30,20,39,10)( 4,24,40,33,15)( 5,22,42,31,13)( 6,23,41,32,14)( 7,27,16,45,34)( 8,26,18,44,35)( 9,25,17,43,36)$ |
| 6A | $6^{6},3^{3}$ | $30$ | $6$ | $36$ | $( 1,20, 3,19, 2,21)( 4,33, 5,31, 6,32)( 7,44, 8,43, 9,45)(10,12,11)(13,22,14,23,15,24)(16,35,18,36,17,34)(25,26,27)(28,37,29,38,30,39)(40,41,42)$ |
| 6B1 | $6^{4},3^{2},2^{6},1^{3}$ | $45$ | $6$ | $30$ | $( 4,41, 6,42, 5,40)( 7,45, 8,44, 9,43)(10,21)(11,20)(12,19)(13,22,15,24,14,23)(16,17,18)(25,34,27,35,26,36)(28,39)(29,37)(30,38)(31,32,33)$ |
| 6B-1 | $6^{4},3^{2},2^{6},1^{3}$ | $45$ | $6$ | $30$ | $( 4,40, 5,42, 6,41)( 7,43, 9,44, 8,45)(10,21)(11,20)(12,19)(13,23,14,24,15,22)(16,18,17)(25,36,26,35,27,34)(28,39)(29,37)(30,38)(31,33,32)$ |
| 6C | $6^{6},3^{3}$ | $90$ | $6$ | $36$ | $( 1,36,31,20,18, 6)( 2,35,33,21,16, 5)( 3,34,32,19,17, 4)( 7,24,37)( 8,22,38)( 9,23,39)(10,44,41,29,25,13)(11,43,40,30,27,14)(12,45,42,28,26,15)$ |
| 6D1 | $6^{6},3^{3}$ | $90$ | $6$ | $36$ | $( 1,33,16)( 2,32,17)( 3,31,18)( 4, 7,21,24,34,38)( 5, 8,20,22,35,39)( 6, 9,19,23,36,37)(10,13,26,30,42,44)(11,14,25,28,41,43)(12,15,27,29,40,45)$ |
| 6D-1 | $6^{6},3^{3}$ | $90$ | $6$ | $36$ | $( 1,16,33)( 2,17,32)( 3,18,31)( 4,38,34,24,21, 7)( 5,39,35,22,20, 8)( 6,37,36,23,19, 9)(10,44,42,30,26,13)(11,43,41,28,25,14)(12,45,40,29,27,15)$ |
| 6E1 | $6^{5},2^{6},1^{3}$ | $90$ | $6$ | $31$ | $( 2, 3)( 4,36, 5,35, 6,34)( 7,24, 9,22, 8,23)(10,29)(11,28)(12,30)(13,27,14,25,15,26)(16,31,17,32,18,33)(19,21)(37,38)(40,44,42,45,41,43)$ |
| 6E-1 | $6^{5},2^{6},1^{3}$ | $90$ | $6$ | $31$ | $( 2, 3)( 4,34, 6,35, 5,36)( 7,23, 8,22, 9,24)(10,29)(11,28)(12,30)(13,26,15,25,14,27)(16,33,18,32,17,31)(19,21)(37,38)(40,43,41,45,42,44)$ |
| 6F | $6^{7},3$ | $180$ | $6$ | $37$ | $( 1, 8,10,18,38,25)( 2, 9,12,17,37,27)( 3, 7,11,16,39,26)( 4,14, 6,15, 5,13)(19,43,20,45,21,44)(22,41,31)(23,42,32,24,40,33)(28,35,29,34,30,36)$ |
| 6G1 | $6^{6},3,2^{3}$ | $180$ | $6$ | $35$ | $( 1,29,37)( 2,30,39, 3,28,38)( 4,26)( 5,27)( 6,25)( 7,33,45,24,17,14)( 8,32,44,23,16,13)( 9,31,43,22,18,15)(10,19,11,20,12,21)(34,41,35,42,36,40)$ |
| 6G-1 | $6^{6},3,2^{3}$ | $180$ | $6$ | $35$ | $( 1,37,29)( 2,38,28, 3,39,30)( 4,26)( 5,27)( 6,25)( 7,14,17,24,45,33)( 8,13,16,23,44,32)( 9,15,18,22,43,31)(10,21,12,20,11,19)(34,40,36,42,35,41)$ |
| 12A1 | $12^{2},6,4^{3},2,1$ | $270$ | $12$ | $37$ | $( 2, 3)( 4,43,41, 7, 6,45,42, 8, 5,44,40, 9)(10,39,21,28)(11,38,20,30)(12,37,19,29)(13,25,22,34,15,27,24,35,14,26,23,36)(16,31,17,32,18,33)$ |
| 12A-1 | $12^{2},6,4^{3},2,1$ | $270$ | $12$ | $37$ | $( 2, 3)( 4, 9,40,44, 5, 8,42,45, 6, 7,41,43)(10,28,21,39)(11,30,20,38)(12,29,19,37)(13,36,23,26,14,35,24,27,15,34,22,25)(16,33,18,32,17,31)$ |
| 15A1 | $15^{3}$ | $24$ | $15$ | $42$ | $( 1,19,10,29,37, 3,21,11,30,38, 2,20,12,28,39)( 4,41,13,24,32, 5,40,14,22,33, 6,42,15,23,31)( 7,17,35,27,43, 8,16,36,26,45, 9,18,34,25,44)$ |
| 15A-1 | $15^{3}$ | $24$ | $15$ | $42$ | $( 1,20,11,29,39, 2,21,10,28,38, 3,19,12,30,37)( 4,42,14,24,31, 6,40,13,23,33, 5,41,15,22,32)( 7,18,36,27,44, 9,16,35,25,45, 8,17,34,26,43)$ |
| 15B1 | $15^{2},5^{3}$ | $72$ | $15$ | $40$ | $( 1,37,20,28,12)( 2,39,21,30,11)( 3,38,19,29,10)( 4,15,40,32,24, 5,13,42,33,22, 6,14,41,31,23)( 7,34,43,26,17, 9,36,44,27,18, 8,35,45,25,16)$ |
| 15B-1 | $15^{2},5^{3}$ | $72$ | $15$ | $40$ | $( 1,12,28,20,37)( 2,11,30,21,39)( 3,10,29,19,38)( 4,23,31,41,14, 6,22,33,42,13, 5,24,32,40,15)( 7,16,25,45,35, 8,18,27,44,36, 9,17,26,43,34)$ |
| 15C1 | $15^{3}$ | $72$ | $15$ | $42$ | $( 1,14,36,10,22,17,28, 4,27,39,33,44,21,42, 7)( 2,13,35,12,24,18,30, 6,25,38,32,45,19,40, 9)( 3,15,34,11,23,16,29, 5,26,37,31,43,20,41, 8)$ |
| 15C-1 | $15^{3}$ | $72$ | $15$ | $42$ | $( 1, 7,42,21,44,33,39,27, 4,28,17,22,10,36,14)( 2, 9,40,19,45,32,38,25, 6,30,18,24,12,35,13)( 3, 8,41,20,43,31,37,26, 5,29,16,23,11,34,15)$ |
| 15D1 | $15^{3}$ | $72$ | $15$ | $42$ | $( 1,14, 8,19,41,17,30,24,35,10,31,45,37, 4,27)( 2,13, 7,20,42,18,29,23,34,12,33,43,39, 6,25)( 3,15, 9,21,40,16,28,22,36,11,32,44,38, 5,26)$ |
| 15D-1 | $15^{3}$ | $72$ | $15$ | $42$ | $( 1,27, 4,37,45,31,10,35,24,30,17,41,19, 8,14)( 2,25, 6,39,43,33,12,34,23,29,18,42,20, 7,13)( 3,26, 5,38,44,32,11,36,22,28,16,40,21, 9,15)$ |
| 15D2 | $15^{3}$ | $72$ | $15$ | $42$ | $( 1, 8,41,30,35,31,37,27,14,19,17,24,10,45, 4)( 2, 7,42,29,34,33,39,25,13,20,18,23,12,43, 6)( 3, 9,40,28,36,32,38,26,15,21,16,22,11,44, 5)$ |
| 15D-2 | $15^{3}$ | $72$ | $15$ | $42$ | $( 1, 4,45,10,24,17,19,14,27,37,31,35,30,41, 8)( 2, 6,43,12,23,18,20,13,25,39,33,34,29,42, 7)( 3, 5,44,11,22,16,21,15,26,38,32,36,28,40, 9)$ |
Malle's constant $a(G)$: $1/18$
Character table
41 x 41 character table
Regular extensions
Data not computed