Show commands: Magma
Group invariants
Abstract group: | $C_{41}:C_{8}$ |
| |
Order: | $328=2^{3} \cdot 41$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $41$ |
| |
Transitive number $t$: | $5$ |
| |
Parity: | $-1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,27,32,3,40,14,9,38)(2,13,23,6,39,28,18,35)(4,26,5,12,37,15,36,29)(7,25,19,21,34,16,22,20)(8,11,10,24,33,30,31,17)$, $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $8$: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{41}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{20},1$ | $41$ | $2$ | $20$ | $( 1,35)( 2,34)( 3,33)( 4,32)( 5,31)( 6,30)( 7,29)( 8,28)( 9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(36,41)(37,40)(38,39)$ |
4A1 | $4^{10},1$ | $41$ | $4$ | $30$ | $( 1, 7,35,29)( 2,39,34,38)( 3,30,33, 6)( 4,21,32,15)( 5,12,31,24)( 8,26,28,10)( 9,17,27,19)(11,40,25,37)(13,22,23,14)(16,36,20,41)$ |
4A-1 | $4^{10},1$ | $41$ | $4$ | $30$ | $( 1,29,35, 7)( 2,38,34,39)( 3, 6,33,30)( 4,15,32,21)( 5,24,31,12)( 8,10,28,26)( 9,19,27,17)(11,37,25,40)(13,14,23,22)(16,41,20,36)$ |
8A1 | $8^{5},1$ | $41$ | $8$ | $35$ | $( 1,10, 7, 8,35,26,29,28)( 2,37,39,11,34,40,38,25)( 3,23,30,14,33,13, 6,22)( 4, 9,21,17,32,27,15,19)( 5,36,12,20,31,41,24,16)$ |
8A-1 | $8^{5},1$ | $41$ | $8$ | $35$ | $( 1,28,29,26,35, 8, 7,10)( 2,25,38,40,34,11,39,37)( 3,22, 6,13,33,14,30,23)( 4,19,15,27,32,17,21, 9)( 5,16,24,41,31,20,12,36)$ |
8A3 | $8^{5},1$ | $41$ | $8$ | $35$ | $( 1, 8,29,10,35,28, 7,26)( 2,11,38,37,34,25,39,40)( 3,14, 6,23,33,22,30,13)( 4,17,15, 9,32,19,21,27)( 5,20,24,36,31,16,12,41)$ |
8A-3 | $8^{5},1$ | $41$ | $8$ | $35$ | $( 1,26, 7,28,35,10,29, 8)( 2,40,39,25,34,37,38,11)( 3,13,30,22,33,23, 6,14)( 4,27,21,19,32, 9,15,17)( 5,41,12,16,31,36,24,20)$ |
41A1 | $41$ | $8$ | $41$ | $40$ | $( 1,22, 2,23, 3,24, 4,25, 5,26, 6,27, 7,28, 8,29, 9,30,10,31,11,32,12,33,13,34,14,35,15,36,16,37,17,38,18,39,19,40,20,41,21)$ |
41A2 | $41$ | $8$ | $41$ | $40$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)$ |
41A4 | $41$ | $8$ | $41$ | $40$ | $( 1, 3, 5, 7, 9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41, 2, 4, 6, 8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40)$ |
41A7 | $41$ | $8$ | $41$ | $40$ | $( 1,25, 8,32,15,39,22, 5,29,12,36,19, 2,26, 9,33,16,40,23, 6,30,13,37,20, 3,27,10,34,17,41,24, 7,31,14,38,21, 4,28,11,35,18)$ |
41A8 | $41$ | $8$ | $41$ | $40$ | $( 1, 5, 9,13,17,21,25,29,33,37,41, 4, 8,12,16,20,24,28,32,36,40, 3, 7,11,15,19,23,27,31,35,39, 2, 6,10,14,18,22,26,30,34,38)$ |
Malle's constant $a(G)$: $1/20$
Character table
1A | 2A | 4A1 | 4A-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | 41A1 | 41A2 | 41A4 | 41A7 | 41A8 | ||
Size | 1 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 2A | 2A | 4A1 | 4A-1 | 4A-1 | 4A1 | 41A2 | 41A4 | 41A8 | 41A1 | 41A7 | |
41 P | 1A | 2A | 4A1 | 4A-1 | 8A-3 | 8A3 | 8A-1 | 8A1 | 41A4 | 41A8 | 41A7 | 41A2 | 41A1 | |
Type | ||||||||||||||
328.12.1a | R | |||||||||||||
328.12.1b | R | |||||||||||||
328.12.1c1 | C | |||||||||||||
328.12.1c2 | C | |||||||||||||
328.12.1d1 | C | |||||||||||||
328.12.1d2 | C | |||||||||||||
328.12.1d3 | C | |||||||||||||
328.12.1d4 | C | |||||||||||||
328.12.8a1 | R | |||||||||||||
328.12.8a2 | R | |||||||||||||
328.12.8a3 | R | |||||||||||||
328.12.8a4 | R | |||||||||||||
328.12.8a5 | R |
Regular extensions
Data not computed