Show commands: Magma
Group invariants
| Abstract group: | $S_5^2:D_4$ |
| |
| Order: | $115200=2^{9} \cdot 3^{2} \cdot 5^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $40$ |
| |
| Transitive number $t$: | $45488$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,19,16,2,20,15)(3,18,10,4,17,9)(5,12,7,6,11,8)(13,14)(21,38,33,30,40,32)(22,37,34,29,39,31)(23,26,28,24,25,27)$, $(1,24,7,37,4,40)(2,23,8,38,3,39)(5,35,19,21,13,30)(6,36,20,22,14,29)(9,26)(10,25)(11,31,17,33,16,28)(12,32,18,34,15,27)$, $(1,34,7,35,5,29,18,23,15,26,2,33,8,36,6,30,17,24,16,25)(3,21,12,38,19,28,9,40,13,32,4,22,11,37,20,27,10,39,14,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ $28800$: $S_5^2 \wr C_2$ $57600$: 20T655 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 8: None
Degree 10: None
Degree 20: 20T540
Low degree siblings
20T781 x 8, 24T17918 x 8, 40T45487 x 4, 40T45488 x 7, 40T45489 x 8, 40T45497 x 4, 40T45508 x 4, 40T45542 x 8, 40T45559 x 4, 40T45560 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
119 x 119 character table
Regular extensions
Data not computed