Show commands: Magma
Group invariants
| Abstract group: | $C_2\times C_5^2:Q_8$ |
| |
| Order: | $400=2^{4} \cdot 5^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $40$ |
| |
| Transitive number $t$: | $325$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,40,9,22)(2,39,10,21)(3,38,12,24)(4,37,11,23)(5,36,13,17)(6,35,14,18)(7,34,15,20)(8,33,16,19)(25,31)(26,32)(27,30)(28,29)$, $(1,32,19,14)(2,31,20,13)(3,29,18,16)(4,30,17,15)(5,34,37,27)(6,33,38,28)(7,36,39,25)(8,35,40,26)(9,24)(10,23)(11,21)(12,22)$, $(1,25,19,36)(2,26,20,35)(3,27,18,34)(4,28,17,33)(5,8)(6,7)(9,11)(10,12)(13,22,37,29)(14,21,38,30)(15,24,39,32)(16,23,40,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$, $Q_8$ x 2 $16$: $Q_8\times C_2$ $200$: $C_5^2 : Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7
Degree 5: None
Degree 8: $C_2^3$
Degree 10: $C_5^2 : Q_8$
Low degree siblings
20T99 x 6, 40T321 x 3, 40T325 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{40}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{20}$ | $1$ | $2$ | $20$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
| 2B | $2^{16},1^{8}$ | $25$ | $2$ | $16$ | $( 1,28)( 2,27)( 3,26)( 4,25)( 5,13)( 6,14)( 7,15)( 8,16)( 9,19)(10,20)(11,17)(12,18)(21,39)(22,40)(23,37)(24,38)$ |
| 2C | $2^{20}$ | $25$ | $2$ | $20$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,32)( 6,31)( 7,29)( 8,30)(13,24)(14,23)(15,22)(16,21)(17,35)(18,36)(19,34)(20,33)(25,26)(27,28)(37,38)(39,40)$ |
| 4A | $4^{8},2^{4}$ | $50$ | $4$ | $28$ | $( 1,12,28,18)( 2,11,27,17)( 3, 9,26,19)( 4,10,25,20)( 5,39,13,21)( 6,40,14,22)( 7,37,15,23)( 8,38,16,24)(29,32)(30,31)(33,35)(34,36)$ |
| 4B | $4^{8},2^{4}$ | $50$ | $4$ | $28$ | $( 1,29)( 2,30)( 3,32)( 4,31)( 5,11,13,36)( 6,12,14,35)( 7,10,15,34)( 8, 9,16,33)(17,37,25,23)(18,38,26,24)(19,40,28,22)(20,39,27,21)$ |
| 4C | $4^{8},2^{4}$ | $50$ | $4$ | $28$ | $( 1,13,19,31)( 2,14,20,32)( 3,15,18,30)( 4,16,17,29)( 5,28,37,33)( 6,27,38,34)( 7,26,39,35)( 8,25,40,36)( 9,23)(10,24)(11,22)(12,21)$ |
| 4D | $4^{8},2^{4}$ | $50$ | $4$ | $28$ | $( 1,14,33, 6)( 2,13,34, 5)( 3,16,35, 8)( 4,15,36, 7)( 9,24,28,38)(10,23,27,37)(11,21,25,39)(12,22,26,40)(17,30)(18,29)(19,32)(20,31)$ |
| 4E | $4^{8},2^{4}$ | $50$ | $4$ | $28$ | $( 1,11,33,25)( 2,12,34,26)( 3,10,35,27)( 4, 9,36,28)( 5,16,31,22)( 6,15,32,21)( 7,14,30,24)( 8,13,29,23)(17,19)(18,20)(37,40)(38,39)$ |
| 4F | $4^{8},2^{4}$ | $50$ | $4$ | $28$ | $( 1,21,33, 7)( 2,22,34, 8)( 3,23,35, 5)( 4,24,36, 6)( 9,39,28,30)(10,40,27,29)(11,38,25,32)(12,37,26,31)(13,18)(14,17)(15,19)(16,20)$ |
| 5A | $5^{8}$ | $8$ | $5$ | $32$ | $( 1,19,33, 9,28)( 2,20,34,10,27)( 3,18,35,12,26)( 4,17,36,11,25)( 5,13,23,31,37)( 6,14,24,32,38)( 7,15,21,30,39)( 8,16,22,29,40)$ |
| 5B | $5^{8}$ | $8$ | $5$ | $32$ | $( 1,33,28,19, 9)( 2,34,27,20,10)( 3,35,26,18,12)( 4,36,25,17,11)( 5,37,31,23,13)( 6,38,32,24,14)( 7,39,30,21,15)( 8,40,29,22,16)$ |
| 5C | $5^{4},1^{20}$ | $8$ | $5$ | $16$ | $( 1, 9,19,28,33)( 2,10,20,27,34)( 3,12,18,26,35)( 4,11,17,25,36)$ |
| 10A | $10^{4}$ | $8$ | $10$ | $36$ | $( 1,10,19,27,33, 2, 9,20,28,34)( 3,11,18,25,35, 4,12,17,26,36)( 5,32,13,38,23, 6,31,14,37,24)( 7,29,15,40,21, 8,30,16,39,22)$ |
| 10B | $10^{4}$ | $8$ | $10$ | $36$ | $( 1,20,33,10,28, 2,19,34, 9,27)( 3,17,35,11,26, 4,18,36,12,25)( 5,24,37,14,31, 6,23,38,13,32)( 7,22,39,16,30, 8,21,40,15,29)$ |
| 10C | $10^{2},2^{10}$ | $8$ | $10$ | $28$ | $( 1,27, 9,34,19, 2,28,10,33,20)( 3,25,12,36,18, 4,26,11,35,17)( 5, 6)( 7, 8)(13,14)(15,16)(21,22)(23,24)(29,30)(31,32)(37,38)(39,40)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 5C | 10A | 10B | 10C | ||
| Size | 1 | 1 | 25 | 25 | 50 | 50 | 50 | 50 | 50 | 50 | 8 | 8 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 2B | 2B | 2B | 2B | 2B | 2B | 5A | 5B | 5C | 5A | 5B | 5C | |
| 5 P | 1A | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 1A | 1A | 1A | 2A | 2A | 2A | |
| Type | |||||||||||||||||
| 400.212.1a | R | ||||||||||||||||
| 400.212.1b | R | ||||||||||||||||
| 400.212.1c | R | ||||||||||||||||
| 400.212.1d | R | ||||||||||||||||
| 400.212.1e | R | ||||||||||||||||
| 400.212.1f | R | ||||||||||||||||
| 400.212.1g | R | ||||||||||||||||
| 400.212.1h | R | ||||||||||||||||
| 400.212.2a | S | ||||||||||||||||
| 400.212.2b | S | ||||||||||||||||
| 400.212.8a | R | ||||||||||||||||
| 400.212.8b | R | ||||||||||||||||
| 400.212.8c | R | ||||||||||||||||
| 400.212.8d | R | ||||||||||||||||
| 400.212.8e | R | ||||||||||||||||
| 400.212.8f | R |
Regular extensions
Data not computed