Show commands: Magma
Group invariants
| Abstract group: | $C_2\times C_5^2:Q_8$ |
| |
| Order: | $400=2^{4} \cdot 5^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $40$ |
| |
| Transitive number $t$: | $321$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,26,34,12)(2,25,33,11)(3,28,35,10)(4,27,36,9)(5,7,6,8)(13,30,38,21)(14,29,37,22)(15,32,39,24)(16,31,40,23)(17,20,18,19)$, $(1,24,34,13)(2,23,33,14)(3,22,35,15)(4,21,36,16)(5,9,32,27)(6,10,31,28)(7,11,30,25)(8,12,29,26)(17,40,18,39)(19,37,20,38)$, $(1,16,9,40)(2,15,10,39)(3,13,12,38)(4,14,11,37)(5,26,6,25)(7,27,8,28)(17,24,36,32)(18,23,35,31)(19,21,33,30)(20,22,34,29)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$, $Q_8$ x 2 $16$: $Q_8\times C_2$ $200$: $C_5^2 : Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: None
Degree 8: $Q_8$
Degree 10: $C_5^2 : Q_8$
Degree 20: $C_5^2:Q_8$
Low degree siblings
20T99 x 6, 40T321 x 2, 40T325 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{40}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{20}$ | $1$ | $2$ | $20$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
| 2B | $2^{20}$ | $25$ | $2$ | $20$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5, 6)( 7, 8)( 9,10)(11,12)(13,38)(14,37)(15,39)(16,40)(21,30)(22,29)(23,31)(24,32)(25,36)(26,35)(27,34)(28,33)$ |
| 2C | $2^{16},1^{8}$ | $25$ | $2$ | $16$ | $( 1,27)( 2,28)( 3,26)( 4,25)( 5,14)( 6,13)( 7,15)( 8,16)( 9,19)(10,20)(11,18)(12,17)(21,40)(22,39)(23,37)(24,38)$ |
| 4A | $4^{10}$ | $50$ | $4$ | $30$ | $( 1,14,19,37)( 2,13,20,38)( 3,16,17,40)( 4,15,18,39)( 5, 9, 6,10)( 7,11, 8,12)(21,26,30,35)(22,25,29,36)(23,27,31,34)(24,28,32,33)$ |
| 4B | $4^{10}$ | $50$ | $4$ | $30$ | $( 1,29, 2,30)( 3,31, 4,32)( 5,35,13,11)( 6,36,14,12)( 7,34,16,10)( 8,33,15, 9)(17,23,26,38)(18,24,25,37)(19,22,27,40)(20,21,28,39)$ |
| 4C | $4^{10}$ | $50$ | $4$ | $30$ | $( 1,11,34,25)( 2,12,33,26)( 3, 9,35,27)( 4,10,36,28)( 5, 7, 6, 8)(13,22,38,29)(14,21,37,30)(15,23,39,31)(16,24,40,32)(17,20,18,19)$ |
| 4D | $4^{10}$ | $50$ | $4$ | $30$ | $( 1,35, 9,18)( 2,36,10,17)( 3,33,12,19)( 4,34,11,20)( 5,16,32,21)( 6,15,31,22)( 7,14,30,23)( 8,13,29,24)(25,28,26,27)(37,40,38,39)$ |
| 4E | $4^{10}$ | $50$ | $4$ | $30$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,33,38)(10,14,34,37)(11,16,35,40)(12,15,36,39)(17,21,26,30)(18,22,25,29)(19,23,27,31)(20,24,28,32)$ |
| 4F | $4^{10}$ | $50$ | $4$ | $30$ | $( 1, 7,28,39)( 2, 8,27,40)( 3, 5,25,37)( 4, 6,26,38)( 9,30,20,15)(10,29,19,16)(11,31,17,13)(12,32,18,14)(21,34,22,33)(23,36,24,35)$ |
| 5A | $5^{4},1^{20}$ | $8$ | $5$ | $16$ | $( 5,24,38,14,31)( 6,23,37,13,32)( 7,21,40,15,29)( 8,22,39,16,30)$ |
| 5B | $5^{8}$ | $8$ | $5$ | $32$ | $( 1,33,27,20,10)( 2,34,28,19, 9)( 3,36,26,18,11)( 4,35,25,17,12)( 5,14,24,31,38)( 6,13,23,32,37)( 7,15,21,29,40)( 8,16,22,30,39)$ |
| 5C | $5^{8}$ | $8$ | $5$ | $32$ | $( 1,33,27,20,10)( 2,34,28,19, 9)( 3,36,26,18,11)( 4,35,25,17,12)( 5,31,14,38,24)( 6,32,13,37,23)( 7,29,15,40,21)( 8,30,16,39,22)$ |
| 10A | $10^{2},2^{10}$ | $8$ | $10$ | $28$ | $( 1, 2)( 3, 4)( 5,13,24,32,38, 6,14,23,31,37)( 7,16,21,30,40, 8,15,22,29,39)( 9,10)(11,12)(17,18)(19,20)(25,26)(27,28)(33,34)(35,36)$ |
| 10B | $10^{4}$ | $8$ | $10$ | $36$ | $( 1,19,33, 9,27, 2,20,34,10,28)( 3,17,36,12,26, 4,18,35,11,25)( 5,32,14,37,24, 6,31,13,38,23)( 7,30,15,39,21, 8,29,16,40,22)$ |
| 10C | $10^{4}$ | $8$ | $10$ | $36$ | $( 1,19,33, 9,27, 2,20,34,10,28)( 3,17,36,12,26, 4,18,35,11,25)( 5,37,31,23,14, 6,38,32,24,13)( 7,39,29,22,15, 8,40,30,21,16)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 5C | 10A | 10B | 10C | ||
| Size | 1 | 1 | 25 | 25 | 50 | 50 | 50 | 50 | 50 | 50 | 8 | 8 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 2B | 2B | 2B | 2B | 2B | 2B | 5A | 5B | 5C | 5A | 5B | 5C | |
| 5 P | 1A | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 1A | 1A | 1A | 2A | 2A | 2A | |
| Type | |||||||||||||||||
| 400.212.1a | R | ||||||||||||||||
| 400.212.1b | R | ||||||||||||||||
| 400.212.1c | R | ||||||||||||||||
| 400.212.1d | R | ||||||||||||||||
| 400.212.1e | R | ||||||||||||||||
| 400.212.1f | R | ||||||||||||||||
| 400.212.1g | R | ||||||||||||||||
| 400.212.1h | R | ||||||||||||||||
| 400.212.2a | S | ||||||||||||||||
| 400.212.2b | S | ||||||||||||||||
| 400.212.8a | R | ||||||||||||||||
| 400.212.8b | R | ||||||||||||||||
| 400.212.8c | R | ||||||||||||||||
| 400.212.8d | R | ||||||||||||||||
| 400.212.8e | R | ||||||||||||||||
| 400.212.8f | R |
Regular extensions
Data not computed