Label 40T247579
Degree $40$
Order $1600000000$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_5^8.C_2^3.C_2^6.C_2^3$


Learn more

Show commands: Magma

magma: G := TransitiveGroup(40, 247579);

Group action invariants

Degree $n$:  $40$
magma: t, n := TransitiveGroupIdentification(G); n;
Transitive number $t$:  $247579$
magma: t, n := TransitiveGroupIdentification(G); t;
Group:  $C_5^8.C_2^3.C_2^6.C_2^3$
Parity:  $1$
magma: IsEven(G);
Primitive:  no
magma: IsPrimitive(G);
magma: NilpotencyClass(G);
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
Generators:  (1,23,40,18,5,24,39,19,4,25,38,20,3,21,37,16,2,22,36,17)(6,26,12,34,10,27,14,31,9,28,11,33,8,29,13,35,7,30,15,32), (1,6,4,10)(2,9,3,7)(5,8)(11,36,13,40)(12,38)(14,37,15,39)(17,20)(18,19)(21,23,24,22)(26,27,30,29)(31,35,34,33,32), (1,26,9,23,5,30,7,22,4,29,10,21,3,28,8,25,2,27,6,24)(11,17,39,31,15,16,40,34,14,20,36,32,13,19,37,35,12,18,38,33)
magma: Generators(G);

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_4$ x 4, $C_2^2$ x 7
$8$:  $D_{4}$ x 14, $C_4\times C_2$ x 6, $C_2^3$, $Q_8$ x 2
$16$:  $D_4\times C_2$ x 7, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 6
$32$:  $C_2^2 \wr C_2$ x 3, $C_2^3 : C_4 $ x 4
$64$:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 4

Resolvents shown for degrees $\leq 10$


Degree 2: $C_2$

Degree 4: $D_{4}$ x 3

Degree 5: None

Degree 8: $C_2^2 \wr C_2$

Degree 10: None

Degree 20: None

Low degree siblings

There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.

Conjugacy classes

The 640 conjugacy class representatives for $C_5^8.C_2^3.C_2^6.C_2^3$

magma: ConjugacyClasses(G);

Group invariants

Order:  $1600000000=2^{12} \cdot 5^{8}$
magma: Order(G);
Cyclic:  no
magma: IsCyclic(G);
Abelian:  no
magma: IsAbelian(G);
Solvable:  yes
magma: IsSolvable(G);
Nilpotency class:   not nilpotent
Label:  1600000000.iyu
magma: IdentifyGroup(G);
Character table:    not computed

magma: CharacterTable(G);