Show commands: Magma
Group invariants
| Abstract group: | $C_{10}\times D_5\wr C_2$ |
| |
| Order: | $2000=2^{4} \cdot 5^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $40$ |
| |
| Transitive number $t$: | $1730$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $10$ |
| |
| Generators: | $(1,17,7,11,3,15,9,20,5,14)(2,18,8,12,4,16,10,19,6,13)(21,40)(22,39)(23,32)(24,31)(25,34)(26,33)(27,35)(28,36)(29,37)(30,38)$, $(1,36,7,32,3,38,9,33,5,40)(2,35,8,31,4,37,10,34,6,39)(11,30,20,21,17,23,15,26,14,28)(12,29,19,22,18,24,16,25,13,27)$, $(1,19,27,36,3,18,29,38,5,16,22,40,7,13,24,32,9,12,25,33)(2,20,28,35,4,17,30,37,6,15,21,39,8,14,23,31,10,11,26,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $5$: $C_5$ $8$: $D_{4}$ x 2, $C_2^3$ $10$: $C_{10}$ x 7 $16$: $D_4\times C_2$ $20$: 20T3 x 7 $40$: 20T12 x 2, 40T7 $80$: 40T20 $200$: $D_5^2 : C_2$ $400$: 20T92 $1000$: $D_5^2:C_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 5: None
Degree 8: $D_4\times C_2$
Degree 10: None
Degree 20: $D_5^2:C_{10}$
Low degree siblings
40T1730 x 7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
140 x 140 character table
Regular extensions
Data not computed