Show commands: Magma
Group invariants
| Abstract group: | $C_2^9.(C_2\times F_5)$ |
| |
| Order: | $20480=2^{12} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $40$ |
| |
| Transitive number $t$: | $12878$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,16)(2,15)(3,13)(4,14)(5,32)(6,31)(7,30)(8,29)(9,27)(10,28)(11,26)(12,25)(19,20)(21,35)(22,36)(23,33)(24,34)(39,40)$, $(1,34,32,40,21,14,11,19)(2,33,31,39,22,13,12,20)(3,35,30,37,23,15,9,17)(4,36,29,38,24,16,10,18)(5,28)(6,27)(7,26,8,25)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $20$: $F_5$ $40$: $F_{5}\times C_2$ $80$: 20T19 $320$: $(C_2^4 : C_5):C_4$ $640$: $((C_2^4 : C_5):C_4)\times C_2$ $1280$: 20T191 $10240$: 20T416 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $F_5$
Degree 8: None
Degree 10: $F_5$, $(C_2^4 : C_5):C_4$, $(C_2^4 : C_5):C_4$
Degree 20: 20T79
Low degree siblings
20T514 x 4, 20T530 x 4, 40T11336 x 4, 40T11339 x 2, 40T11360 x 2, 40T11364 x 2, 40T11373 x 2, 40T11378 x 2, 40T11390 x 4, 40T11391 x 4, 40T12858 x 2, 40T12860 x 4, 40T12876 x 2, 40T12878, 40T12880 x 2, 40T12988 x 2, 40T12991 x 2, 40T12992 x 4, 40T13368 x 2, 40T13429 x 2, 40T13440 x 4, 40T13454 x 4, 40T13593 x 2, 40T13608 x 2, 40T14049 x 4, 40T14050 x 4, 40T14163 x 2, 40T14167 x 2, 40T14170 x 2, 40T14175 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
74 x 74 character table
Regular extensions
Data not computed