Show commands: Magma
Group invariants
| Abstract group: | $C_2^9.(C_2\times F_5)$ |
| |
| Order: | $20480=2^{12} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $40$ |
| |
| Transitive number $t$: | $11336$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,40,28,31)(2,39,27,32)(3,38,25,29)(4,37,26,30)(5,12,22,18)(6,11,21,17)(7,9,23,19)(8,10,24,20)(13,33,15,36)(14,34,16,35)$, $(1,12,2,11)(3,9)(4,10)(5,6)(7,8)(13,40)(14,39)(15,38,16,37)(17,33)(18,34)(19,36)(20,35)(21,29,22,30)(23,31)(24,32)(27,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $20$: $F_5$ $40$: $F_{5}\times C_2$ $80$: 20T19 $320$: $(C_2^4 : C_5):C_4$ $640$: $((C_2^4 : C_5):C_4)\times C_2$ $1280$: 20T191 $10240$: 20T416 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: $F_5$
Degree 8: None
Degree 10: $F_5$
Degree 20: 20T9
Low degree siblings
20T514 x 4, 20T530 x 4, 40T11336 x 3, 40T11339 x 2, 40T11360 x 2, 40T11364 x 2, 40T11373 x 2, 40T11378 x 2, 40T11390 x 4, 40T11391 x 4, 40T12858 x 2, 40T12860 x 4, 40T12876 x 2, 40T12878 x 2, 40T12880 x 2, 40T12988 x 2, 40T12991 x 2, 40T12992 x 4, 40T13368 x 2, 40T13429 x 2, 40T13440 x 4, 40T13454 x 4, 40T13593 x 2, 40T13608 x 2, 40T14049 x 4, 40T14050 x 4, 40T14163 x 2, 40T14167 x 2, 40T14170 x 2, 40T14175 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
74 x 74 character table
Regular extensions
Data not computed