Show commands: Magma
Group invariants
Abstract group: | $C_2^6:D_{10}$ |
| |
Order: | $1280=2^{8} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $40$ |
| |
Transitive number $t$: | $1013$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,37,4,40)(2,38,3,39)(5,33,7,36)(6,34,8,35)(9,31,11,30)(10,32,12,29)(13,27,16,25)(14,28,15,26)(17,23,20,22)(18,24,19,21)$, $(1,22)(2,21)(3,24)(4,23)(5,26)(6,25)(7,28)(8,27)(9,32)(10,31)(11,29)(12,30)(13,36)(14,35)(15,34)(16,33)(17,40)(18,39)(19,38)(20,37)$, $(1,13,4,16)(2,14,3,15)(5,10,7,12)(6,9,8,11)(17,40,20,37)(18,39,19,38)(21,34,24,35)(22,33,23,36)(25,30,27,31)(26,29,28,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $10$: $D_{5}$ $16$: $D_4\times C_2$ $20$: $D_{10}$ x 3 $40$: 20T7 x 2, 20T8 $80$: 40T24 $160$: $(C_2^4 : C_5) : C_2$ $320$: $C_2\times (C_2^4 : D_5)$ x 3 $640$: 20T136 x 2, 20T141 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $D_{5}$
Degree 8: None
Degree 10: $D_{10}$, $C_2\times (C_2^4 : D_5)$ x 2
Low degree siblings
40T1002 x 6, 40T1013 x 11, 40T1019 x 6, 40T1040 x 12, 40T1131 x 12, 40T1132 x 24, 40T1133 x 48, 40T1158 x 48, 40T1159 x 48, 40T1169 x 12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
56 x 56 character table
Regular extensions
Data not computed