Group action invariants
Degree $n$: | $40$ | |
Transitive number $t$: | $10$ | |
Group: | $C_2^2\times D_5$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $40$ | |
Generators: | (1,29)(2,30)(3,32)(4,31)(5,27)(6,28)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,19)(14,20)(15,17)(16,18)(33,38)(34,37)(35,39)(36,40), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40), (1,18)(2,17)(3,19)(4,20)(5,15)(6,16)(7,14)(8,13)(9,12)(10,11)(21,38)(22,37)(23,40)(24,39)(25,36)(26,35)(27,33)(28,34)(29,32)(30,31) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$ $10$: $D_{5}$ $20$: $D_{10}$ x 3 Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7
Degree 5: $D_{5}$
Degree 8: $C_2^3$
Low degree siblings
There are no siblings with degree $\leq 10$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 3)( 2, 4)( 5,38)( 6,37)( 7,39)( 8,40)( 9,35)(10,36)(11,34)(12,33)(13,32) (14,31)(15,30)(16,29)(17,27)(18,28)(19,25)(20,26)(21,24)(22,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 4)( 2, 3)( 5,37)( 6,38)( 7,40)( 8,39)( 9,36)(10,35)(11,33)(12,34)(13,31) (14,32)(15,29)(16,30)(17,28)(18,27)(19,26)(20,25)(21,23)(22,24)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,37)(10,38)(11,39)(12,40)(13,35)(14,36)(15,34) (16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,38)(10,37)(11,40)(12,39)(13,36)(14,35)(15,33) (16,34)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26)$ |
$ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1, 7,11,15,19,24,28,31,36,38)( 2, 8,12,16,20,23,27,32,35,37)( 3, 5,10,14,18, 21,25,30,34,39)( 4, 6, 9,13,17,22,26,29,33,40)$ |
$ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1, 8,11,16,19,23,28,32,36,37)( 2, 7,12,15,20,24,27,31,35,38)( 3, 6,10,13,18, 22,25,29,34,40)( 4, 5, 9,14,17,21,26,30,33,39)$ |
$ 5, 5, 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,11,19,28,36)( 2,12,20,27,35)( 3,10,18,25,34)( 4, 9,17,26,33) ( 5,14,21,30,39)( 6,13,22,29,40)( 7,15,24,31,38)( 8,16,23,32,37)$ |
$ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,12,19,27,36, 2,11,20,28,35)( 3, 9,18,26,34, 4,10,17,25,33)( 5,13,21,29,39, 6,14,22,30,40)( 7,16,24,32,38, 8,15,23,31,37)$ |
$ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,15,28,38,11,24,36, 7,19,31)( 2,16,27,37,12,23,35, 8,20,32)( 3,14,25,39,10, 21,34, 5,18,30)( 4,13,26,40, 9,22,33, 6,17,29)$ |
$ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,16,28,37,11,23,36, 8,19,32)( 2,15,27,38,12,24,35, 7,20,31)( 3,13,25,40,10, 22,34, 6,18,29)( 4,14,26,39, 9,21,33, 5,17,30)$ |
$ 5, 5, 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,19,36,11,28)( 2,20,35,12,27)( 3,18,34,10,25)( 4,17,33, 9,26) ( 5,21,39,14,30)( 6,22,40,13,29)( 7,24,38,15,31)( 8,23,37,16,32)$ |
$ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,20,36,12,28, 2,19,35,11,27)( 3,17,34, 9,25, 4,18,33,10,26)( 5,22,39,13,30, 6,21,40,14,29)( 7,23,38,16,31, 8,24,37,15,32)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,23)( 2,24)( 3,22)( 4,21)( 5,26)( 6,25)( 7,27)( 8,28)( 9,30)(10,29)(11,32) (12,31)(13,34)(14,33)(15,35)(16,36)(17,39)(18,40)(19,37)(20,38)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,24)( 2,23)( 3,21)( 4,22)( 5,25)( 6,26)( 7,28)( 8,27)( 9,29)(10,30)(11,31) (12,32)(13,33)(14,34)(15,36)(16,35)(17,40)(18,39)(19,38)(20,37)$ |
Group invariants
Order: | $40=2^{3} \cdot 5$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [40, 13] |
Character table: |
2 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5 1 1 . . . . 1 1 1 1 1 1 1 1 1 1 1a 2a 2b 2c 2d 2e 10a 10b 5a 10c 10d 10e 5b 10f 2f 2g 2P 1a 1a 1a 1a 1a 1a 5a 5a 5b 5b 5b 5b 5a 5a 1a 1a 3P 1a 2a 2b 2c 2d 2e 10d 10e 5b 10f 10a 10b 5a 10c 2f 2g 5P 1a 2a 2b 2c 2d 2e 2g 2f 1a 2a 2g 2f 1a 2a 2f 2g 7P 1a 2a 2b 2c 2d 2e 10d 10e 5b 10f 10a 10b 5a 10c 2f 2g X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 X.3 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 X.4 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 X.5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 X.6 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 X.7 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 X.8 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 X.9 2 -2 . . . . A -A -*A *A *A -*A -A A 2 -2 X.10 2 -2 . . . . *A -*A -A A A -A -*A *A 2 -2 X.11 2 -2 . . . . -*A *A -A A -A A -*A *A -2 2 X.12 2 -2 . . . . -A A -*A *A -*A *A -A A -2 2 X.13 2 2 . . . . A A -*A -*A *A *A -A -A -2 -2 X.14 2 2 . . . . *A *A -A -A A A -*A -*A -2 -2 X.15 2 2 . . . . -*A -*A -A -A -A -A -*A -*A 2 2 X.16 2 2 . . . . -A -A -*A -*A -*A -*A -A -A 2 2 A = -E(5)-E(5)^4 = (1-Sqrt(5))/2 = -b5 |