Show commands: Magma
Group invariants
| Abstract group: | $C_2\times D_{10}$ |
| |
| Order: | $40=2^{3} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $40$ |
| |
| Transitive number $t$: | $10$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $40$ |
| |
| Generators: | $(1,29)(2,30)(3,32)(4,31)(5,27)(6,28)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,19)(14,20)(15,17)(16,18)(33,38)(34,37)(35,39)(36,40)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$, $(1,18)(2,17)(3,19)(4,20)(5,15)(6,16)(7,14)(8,13)(9,12)(10,11)(21,38)(22,37)(23,40)(24,39)(25,36)(26,35)(27,33)(28,34)(29,32)(30,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$ $10$: $D_{5}$ $20$: $D_{10}$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7
Degree 5: $D_{5}$
Degree 8: $C_2^3$
Low degree siblings
20T8 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{40}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{20}$ | $1$ | $2$ | $20$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
| 2B | $2^{20}$ | $1$ | $2$ | $20$ | $( 1,23)( 2,24)( 3,22)( 4,21)( 5,26)( 6,25)( 7,27)( 8,28)( 9,30)(10,29)(11,32)(12,31)(13,34)(14,33)(15,35)(16,36)(17,39)(18,40)(19,37)(20,38)$ |
| 2C | $2^{20}$ | $1$ | $2$ | $20$ | $( 1,24)( 2,23)( 3,21)( 4,22)( 5,25)( 6,26)( 7,28)( 8,27)( 9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,36)(16,35)(17,40)(18,39)(19,38)(20,37)$ |
| 2D | $2^{20}$ | $5$ | $2$ | $20$ | $( 1,29)( 2,30)( 3,32)( 4,31)( 5,27)( 6,28)( 7,26)( 8,25)( 9,24)(10,23)(11,22)(12,21)(13,19)(14,20)(15,17)(16,18)(33,38)(34,37)(35,39)(36,40)$ |
| 2E | $2^{20}$ | $5$ | $2$ | $20$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,37)(10,38)(11,39)(12,40)(13,35)(14,36)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)$ |
| 2F | $2^{20}$ | $5$ | $2$ | $20$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5, 7)( 6, 8)(13,37)(14,38)(15,39)(16,40)(17,35)(18,36)(19,34)(20,33)(21,31)(22,32)(23,29)(24,30)(25,28)(26,27)$ |
| 2G | $2^{20}$ | $5$ | $2$ | $20$ | $( 1,26)( 2,25)( 3,27)( 4,28)( 5,23)( 6,24)( 7,22)( 8,21)( 9,19)(10,20)(11,17)(12,18)(13,15)(14,16)(29,38)(30,37)(31,40)(32,39)(33,36)(34,35)$ |
| 5A1 | $5^{8}$ | $2$ | $5$ | $32$ | $( 1,36,28,19,11)( 2,35,27,20,12)( 3,34,25,18,10)( 4,33,26,17, 9)( 5,39,30,21,14)( 6,40,29,22,13)( 7,38,31,24,15)( 8,37,32,23,16)$ |
| 5A2 | $5^{8}$ | $2$ | $5$ | $32$ | $( 1,28,11,36,19)( 2,27,12,35,20)( 3,25,10,34,18)( 4,26, 9,33,17)( 5,30,14,39,21)( 6,29,13,40,22)( 7,31,15,38,24)( 8,32,16,37,23)$ |
| 10A1 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1,20,36,12,28, 2,19,35,11,27)( 3,17,34, 9,25, 4,18,33,10,26)( 5,22,39,13,30, 6,21,40,14,29)( 7,23,38,16,31, 8,24,37,15,32)$ |
| 10A3 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1,12,19,27,36, 2,11,20,28,35)( 3, 9,18,26,34, 4,10,17,25,33)( 5,13,21,29,39, 6,14,22,30,40)( 7,16,24,32,38, 8,15,23,31,37)$ |
| 10B1 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1,16,28,37,11,23,36, 8,19,32)( 2,15,27,38,12,24,35, 7,20,31)( 3,13,25,40,10,22,34, 6,18,29)( 4,14,26,39, 9,21,33, 5,17,30)$ |
| 10B3 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1, 8,11,16,19,23,28,32,36,37)( 2, 7,12,15,20,24,27,31,35,38)( 3, 6,10,13,18,22,25,29,34,40)( 4, 5, 9,14,17,21,26,30,33,39)$ |
| 10C1 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1,38,36,31,28,24,19,15,11, 7)( 2,37,35,32,27,23,20,16,12, 8)( 3,39,34,30,25,21,18,14,10, 5)( 4,40,33,29,26,22,17,13, 9, 6)$ |
| 10C3 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1,31,19, 7,36,24,11,38,28,15)( 2,32,20, 8,35,23,12,37,27,16)( 3,30,18, 5,34,21,10,39,25,14)( 4,29,17, 6,33,22, 9,40,26,13)$ |
Malle's constant $a(G)$: $1/20$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 5A1 | 5A2 | 10A1 | 10A3 | 10B1 | 10B3 | 10C1 | 10C3 | ||
| Size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 5A2 | 5A1 | 5A1 | 5A2 | 5A2 | 5A1 | 5A1 | 5A2 | |
| 5 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 2A | 2A | 2B | 2B | 2C | 2C | |
| Type | |||||||||||||||||
| 40.13.1a | R | ||||||||||||||||
| 40.13.1b | R | ||||||||||||||||
| 40.13.1c | R | ||||||||||||||||
| 40.13.1d | R | ||||||||||||||||
| 40.13.1e | R | ||||||||||||||||
| 40.13.1f | R | ||||||||||||||||
| 40.13.1g | R | ||||||||||||||||
| 40.13.1h | R | ||||||||||||||||
| 40.13.2a1 | R | ||||||||||||||||
| 40.13.2a2 | R | ||||||||||||||||
| 40.13.2b1 | R | ||||||||||||||||
| 40.13.2b2 | R | ||||||||||||||||
| 40.13.2c1 | R | ||||||||||||||||
| 40.13.2c2 | R | ||||||||||||||||
| 40.13.2d1 | R | ||||||||||||||||
| 40.13.2d2 | R |
Regular extensions
Data not computed