Group action invariants
| Degree $n$ : | $39$ | |
| Transitive number $t$ : | $43$ | |
| Group : | $\PSL(3,3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8,18,13,5,20,37,36)(2,9,16,14,4,19,39,34)(3,7,17,15,6,21,38,35)(10,24,33,27)(11,23,32,26,12,22,31,25)(28,30), (1,37,25,7)(2,39,26,9,3,38,27,8)(4,13,22,35,30,19,33,18)(5,14,23,36,28,20,31,16)(6,15,24,34,29,21,32,17)(11,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 13: $\PSL(3,3)$
Low degree siblings
13T7 x 2, 26T39 x 2, 39T43Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $104$ | $3$ | $( 1,21,35)( 2,19,34)( 3,20,36)( 4,14, 9)( 5,15, 7)( 6,13, 8)(10,12,11) (16,29,39)(17,30,38)(18,28,37)(22,23,24)(25,26,27)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $117$ | $2$ | $( 1,30)( 2,29)( 3,28)( 5, 6)( 7, 8)(13,15)(16,34)(17,35)(18,36)(19,39)(20,37) (21,38)(22,26)(23,27)(24,25)(31,33)$ |
| $ 6, 6, 6, 6, 6, 3, 3, 2, 1 $ | $936$ | $6$ | $( 1,38,35,30,21,17)( 2,39,34,29,19,16)( 3,37,36,28,20,18)( 4,14, 9) ( 5,13, 7, 6,15, 8)(10,12,11)(22,27,24,26,23,25)(31,33)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 1, 1, 1 $ | $702$ | $4$ | $( 1,23,30,27)( 2,22,29,26)( 3,24,28,25)( 4,32)( 5,31, 6,33)( 7,13, 8,15) ( 9,14)(16,21,34,38)(17,20,35,37)(18,19,36,39)$ |
| $ 8, 8, 8, 8, 4, 2, 1 $ | $702$ | $8$ | $( 1,38,23,16,30,21,27,34)( 2,37,22,17,29,20,26,35)( 3,39,24,18,28,19,25,36) ( 4,14,32, 9)( 5,15,31, 7, 6,13,33, 8)(11,12)$ |
| $ 8, 8, 8, 8, 4, 2, 1 $ | $702$ | $8$ | $( 1,34,27,21,30,16,23,38)( 2,35,26,20,29,17,22,37)( 3,36,25,19,28,18,24,39) ( 4, 9,32,14)( 5, 8,33,13, 6, 7,31,15)(11,12)$ |
| $ 13, 13, 13 $ | $432$ | $13$ | $( 1,38,35, 7, 5,12,14,28,20,25,24,16,33)( 2,37,34, 8, 6,10,13,30,21,27,22,17, 31)( 3,39,36, 9, 4,11,15,29,19,26,23,18,32)$ |
| $ 13, 13, 13 $ | $432$ | $13$ | $( 1,20, 7,16,14,38,25, 5,33,28,35,24,12)( 2,21, 8,17,13,37,27, 6,31,30,34,22, 10)( 3,19, 9,18,15,39,26, 4,32,29,36,23,11)$ |
| $ 13, 13, 13 $ | $432$ | $13$ | $( 1,33,16,24,25,20,28,14,12, 5, 7,35,38)( 2,31,17,22,27,21,30,13,10, 6, 8,34, 37)( 3,32,18,23,26,19,29,15,11, 4, 9,36,39)$ |
| $ 13, 13, 13 $ | $432$ | $13$ | $( 1,12,24,35,28,33, 5,25,38,14,16, 7,20)( 2,10,22,34,30,31, 6,27,37,13,17, 8, 21)( 3,11,23,36,29,32, 4,26,39,15,18, 9,19)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $624$ | $3$ | $( 1, 5,22)( 2, 4,23)( 3, 6,24)( 7, 9, 8)(10,35,16)(11,34,18)(12,36,17) (13,28,37)(14,29,38)(15,30,39)(19,25,33)(20,26,31)(21,27,32)$ |
Group invariants
| Order: | $5616=2^{4} \cdot 3^{3} \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 4 1 1 3 3 3 . . . . .
3 3 1 3 1 . . . 2 . . . .
13 1 . . . . . . . 1 1 1 1
1a 2a 3a 6a 4a 8a 8b 3b 13a 13b 13c 13d
2P 1a 1a 3a 3a 2a 4a 4a 3b 13d 13a 13b 13c
3P 1a 2a 1a 2a 4a 8a 8b 1a 13a 13b 13c 13d
5P 1a 2a 3a 6a 4a 8b 8a 3b 13d 13a 13b 13c
7P 1a 2a 3a 6a 4a 8b 8a 3b 13b 13c 13d 13a
11P 1a 2a 3a 6a 4a 8a 8b 3b 13b 13c 13d 13a
13P 1a 2a 3a 6a 4a 8b 8a 3b 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 12 4 3 1 . . . . -1 -1 -1 -1
X.3 13 -3 4 . 1 -1 -1 1 . . . .
X.4 16 . -2 . . . . 1 B /C /B C
X.5 16 . -2 . . . . 1 /B C B /C
X.6 16 . -2 . . . . 1 C B /C /B
X.7 16 . -2 . . . . 1 /C /B C B
X.8 26 2 -1 -1 2 . . -1 . . . .
X.9 26 -2 -1 1 . A -A -1 . . . .
X.10 26 -2 -1 1 . -A A -1 . . . .
X.11 27 3 . . -1 -1 -1 . 1 1 1 1
X.12 39 -1 3 -1 -1 1 1 . . . . .
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
B = E(13)^2+E(13)^5+E(13)^6
C = E(13)^4+E(13)^10+E(13)^12
|