Show commands: Magma
Group invariants
| Abstract group: | $C_{38}:C_6$ |
| |
| Order: | $228=2^{2} \cdot 3 \cdot 19$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $38$ |
| |
| Transitive number $t$: | $6$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,11,6,2,12,5)(3,25,28,4,26,27)(7,15,33,8,16,34)(9,29,18,10,30,17)(13,20,24,14,19,23)(21,38,35,22,37,36)(31,32)$, $(1,3)(2,4)(5,37)(6,38)(7,35)(8,36)(9,33)(10,34)(11,31)(12,32)(13,29)(14,30)(15,28)(16,27)(17,25)(18,26)(19,23)(20,24)(21,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $12$: $C_6\times C_2$ $114$: $C_{19}:C_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: $C_{19}:C_{6}$
Low degree siblings
38T6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{38}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{19}$ | $1$ | $2$ | $19$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)$ |
| 2B | $2^{18},1^{2}$ | $19$ | $2$ | $18$ | $( 1, 6)( 2, 5)( 7,38)( 8,37)( 9,35)(10,36)(11,33)(12,34)(13,31)(14,32)(15,30)(16,29)(17,28)(18,27)(19,25)(20,26)(21,24)(22,23)$ |
| 2C | $2^{19}$ | $19$ | $2$ | $19$ | $( 1,17)( 2,18)( 3,15)( 4,16)( 5,13)( 6,14)( 7,12)( 8,11)( 9,10)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,29)(28,30)$ |
| 3A1 | $3^{12},1^{2}$ | $19$ | $3$ | $24$ | $( 1,27,19)( 2,28,20)( 5,17,26)( 6,18,25)( 7,32,10)( 8,31, 9)(11,22,16)(12,21,15)(13,35,37)(14,36,38)(23,29,33)(24,30,34)$ |
| 3A-1 | $3^{12},1^{2}$ | $19$ | $3$ | $24$ | $( 1,19,27)( 2,20,28)( 5,26,17)( 6,25,18)( 7,10,32)( 8, 9,31)(11,16,22)(12,15,21)(13,37,35)(14,38,36)(23,33,29)(24,34,30)$ |
| 6A1 | $6^{6},1^{2}$ | $19$ | $6$ | $30$ | $( 1,25,27, 6,19,18)( 2,26,28, 5,20,17)( 7,36,32,38,10,14)( 8,35,31,37, 9,13)(11,29,22,33,16,23)(12,30,21,34,15,24)$ |
| 6A-1 | $6^{6},1^{2}$ | $19$ | $6$ | $30$ | $( 1,18,19, 6,27,25)( 2,17,20, 5,28,26)( 7,14,10,38,32,36)( 8,13, 9,37,31,35)(11,23,16,33,22,29)(12,24,15,34,21,30)$ |
| 6B1 | $6^{6},2$ | $19$ | $6$ | $31$ | $( 1,22,30,17,35,28)( 2,21,29,18,36,27)( 3,37, 5,15,20,13)( 4,38, 6,16,19,14)( 7,31,33,12,26,24)( 8,32,34,11,25,23)( 9,10)$ |
| 6B-1 | $6^{6},2$ | $19$ | $6$ | $31$ | $( 1,28,35,17,30,22)( 2,27,36,18,29,21)( 3,13,20,15, 5,37)( 4,14,19,16, 6,38)( 7,24,26,12,33,31)( 8,23,25,11,34,32)( 9,10)$ |
| 6C1 | $6^{6},2$ | $19$ | $6$ | $31$ | $( 1,38,24, 2,37,23)( 3,13, 7, 4,14, 8)( 5,27,29, 6,28,30)( 9,17,35,10,18,36)(11,31,20,12,32,19)(15,22,25,16,21,26)(33,34)$ |
| 6C-1 | $6^{6},2$ | $19$ | $6$ | $31$ | $( 1,23,37, 2,24,38)( 3, 8,14, 4, 7,13)( 5,30,28, 6,29,27)( 9,36,18,10,35,17)(11,19,32,12,20,31)(15,26,21,16,25,22)(33,34)$ |
| 19A1 | $19^{2}$ | $6$ | $19$ | $36$ | $( 1,34,27,21,15, 9, 4,35,30,24,18,12, 6,37,31,25,19,13, 8)( 2,33,28,22,16,10, 3,36,29,23,17,11, 5,38,32,26,20,14, 7)$ |
| 19A2 | $19^{2}$ | $6$ | $19$ | $36$ | $( 1,27,15, 4,30,18, 6,31,19, 8,34,21, 9,35,24,12,37,25,13)( 2,28,16, 3,29,17, 5,32,20, 7,33,22,10,36,23,11,38,26,14)$ |
| 19A4 | $19^{2}$ | $6$ | $19$ | $36$ | $( 1,15,30, 6,19,34, 9,24,37,13,27, 4,18,31, 8,21,35,12,25)( 2,16,29, 5,20,33,10,23,38,14,28, 3,17,32, 7,22,36,11,26)$ |
| 38A1 | $38$ | $6$ | $38$ | $37$ | $( 1,17,34,11,27, 5,21,38,15,32, 9,26, 4,20,35,14,30, 7,24, 2,18,33,12,28, 6,22,37,16,31,10,25, 3,19,36,13,29, 8,23)$ |
| 38A3 | $38$ | $6$ | $38$ | $37$ | $( 1,11,21,32, 4,14,24,33, 6,16,25,36, 8,17,27,38, 9,20,30, 2,12,22,31, 3,13,23,34, 5,15,26,35, 7,18,28,37,10,19,29)$ |
| 38A9 | $38$ | $6$ | $38$ | $37$ | $( 1,32,24,16, 8,38,30,22,13, 5,35,28,19,11, 4,33,25,17, 9, 2,31,23,15, 7,37,29,21,14, 6,36,27,20,12, 3,34,26,18,10)$ |
Malle's constant $a(G)$: $1/18$
Character table
| 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 19A1 | 19A2 | 19A4 | 38A1 | 38A3 | 38A9 | ||
| Size | 1 | 1 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 6 | 6 | 6 | 6 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 19A2 | 19A4 | 19A1 | 19A1 | 19A2 | 19A4 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 2B | 2B | 2C | 2C | 2A | 2A | 19A2 | 19A4 | 19A1 | 38A3 | 38A9 | 38A1 | |
| 19 P | 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 1A | 1A | 1A | 2A | 2A | 2A | |
| Type | |||||||||||||||||||
| 228.7.1a | R | ||||||||||||||||||
| 228.7.1b | R | ||||||||||||||||||
| 228.7.1c | R | ||||||||||||||||||
| 228.7.1d | R | ||||||||||||||||||
| 228.7.1e1 | C | ||||||||||||||||||
| 228.7.1e2 | C | ||||||||||||||||||
| 228.7.1f1 | C | ||||||||||||||||||
| 228.7.1f2 | C | ||||||||||||||||||
| 228.7.1g1 | C | ||||||||||||||||||
| 228.7.1g2 | C | ||||||||||||||||||
| 228.7.1h1 | C | ||||||||||||||||||
| 228.7.1h2 | C | ||||||||||||||||||
| 228.7.6a1 | R | ||||||||||||||||||
| 228.7.6a2 | R | ||||||||||||||||||
| 228.7.6a3 | R | ||||||||||||||||||
| 228.7.6b1 | R | ||||||||||||||||||
| 228.7.6b2 | R | ||||||||||||||||||
| 228.7.6b3 | R |
Regular extensions
Data not computed