Group action invariants
Degree $n$: | $38$ | |
Transitive number $t$: | $5$ | |
Group: | $D_{19}:C_3$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $2$ | |
Generators: | (1,34,29)(2,33,30)(3,9,13)(4,10,14)(5,23,35)(6,24,36)(7,38,19)(8,37,20)(11,27,25)(12,28,26)(15,18,32)(16,17,31), (1,3,27,12,10,24)(2,4,28,11,9,23)(5,13,34,8,38,17)(6,14,33,7,37,18)(15,20,29,36,32,21)(16,19,30,35,31,22)(25,26) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: $C_{19}:C_{6}$
Low degree siblings
19T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $19$ | $3$ | $( 3,16,24)( 4,15,23)( 5,29, 7)( 6,30, 8)( 9,20,13)(10,19,14)(11,34,35) (12,33,36)(17,37,26)(18,38,25)(21,28,31)(22,27,32)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $19$ | $3$ | $( 3,24,16)( 4,23,15)( 5, 7,29)( 6, 8,30)( 9,13,20)(10,14,19)(11,35,34) (12,36,33)(17,26,37)(18,25,38)(21,31,28)(22,32,27)$ |
$ 6, 6, 6, 6, 6, 6, 2 $ | $19$ | $6$ | $( 1, 2)( 3,18,16,38,24,25)( 4,17,15,37,23,26)( 5,33,29,36, 7,12) ( 6,34,30,35, 8,11)( 9,27,20,32,13,22)(10,28,19,31,14,21)$ |
$ 6, 6, 6, 6, 6, 6, 2 $ | $19$ | $6$ | $( 1, 2)( 3,25,24,38,16,18)( 4,26,23,37,15,17)( 5,12, 7,36,29,33) ( 6,11, 8,35,30,34)( 9,22,13,32,20,27)(10,21,14,31,19,28)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $19$ | $2$ | $( 1, 2)( 3,38)( 4,37)( 5,36)( 6,35)( 7,33)( 8,34)( 9,32)(10,31)(11,30)(12,29) (13,27)(14,28)(15,26)(16,25)(17,23)(18,24)(19,21)(20,22)$ |
$ 19, 19 $ | $6$ | $19$ | $( 1, 4, 5, 7,10,11,14,15,18,19,22,23,25,27,29,32,34,35,38)( 2, 3, 6, 8, 9,12, 13,16,17,20,21,24,26,28,30,31,33,36,37)$ |
$ 19, 19 $ | $6$ | $19$ | $( 1, 5,10,14,18,22,25,29,34,38, 4, 7,11,15,19,23,27,32,35)( 2, 6, 9,13,17,21, 26,30,33,37, 3, 8,12,16,20,24,28,31,36)$ |
$ 19, 19 $ | $6$ | $19$ | $( 1,10,18,25,34, 4,11,19,27,35, 5,14,22,29,38, 7,15,23,32)( 2, 9,17,26,33, 3, 12,20,28,36, 6,13,21,30,37, 8,16,24,31)$ |
Group invariants
Order: | $114=2 \cdot 3 \cdot 19$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [114, 1] |
Character table: |
2 1 1 1 1 1 1 . . . 3 1 1 1 1 1 1 . . . 19 1 . . . . . 1 1 1 1a 3a 3b 6a 6b 2a 19a 19b 19c 2P 1a 3b 3a 3a 3b 1a 19b 19c 19a 3P 1a 1a 1a 2a 2a 2a 19b 19c 19a 5P 1a 3b 3a 6b 6a 2a 19b 19c 19a 7P 1a 3a 3b 6a 6b 2a 19a 19b 19c 11P 1a 3b 3a 6b 6a 2a 19a 19b 19c 13P 1a 3a 3b 6a 6b 2a 19c 19a 19b 17P 1a 3b 3a 6b 6a 2a 19b 19c 19a 19P 1a 3a 3b 6a 6b 2a 1a 1a 1a X.1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 -1 -1 -1 1 1 1 X.3 1 A /A -/A -A -1 1 1 1 X.4 1 /A A -A -/A -1 1 1 1 X.5 1 A /A /A A 1 1 1 1 X.6 1 /A A A /A 1 1 1 1 X.7 6 . . . . . B C D X.8 6 . . . . . C D B X.9 6 . . . . . D B C A = E(3)^2 = (-1-Sqrt(-3))/2 = -1-b3 B = E(19)^2+E(19)^3+E(19)^5+E(19)^14+E(19)^16+E(19)^17 C = E(19)^4+E(19)^6+E(19)^9+E(19)^10+E(19)^13+E(19)^15 D = E(19)+E(19)^7+E(19)^8+E(19)^11+E(19)^12+E(19)^18 |